
Improving Implicit Parallelism

José Manuel Calderón Trilla

Computer Science
University of York

Doctor of Philosophy

September 2015

A B S T R A C T

We propose a new technique for exploiting the inherent parallelism
in lazy functional programs. Known as implicit parallelism, the goal
of writing a sequential program and having the compiler improve
its performance by determining what can be executed in parallel has
been studied for many years. Our technique abandons the idea that a
compiler should accomplish this feat in ‘one shot’ with static analysis
and instead allows the compiler to improve upon the static analysis
using iterative feedback.

We demonstrate that iterative feedback can be relatively simple
when the source language is a lazy purely functional programming
language. We present three main contributions to the field: the auto-
matic derivation of parallel strategies from a demand on a structure,
and two new methods of feedback-directed auto-parallelisation. The
first method treats the runtime of the program as a black box and uses
the ‘wall-clock’ time as a fitness function to guide a heuristic search
on bitstrings representing the parallel setting of the program. The
second feedback approach is profile directed. This allows the compiler
to use profile data that is gathered by the runtime system as the pro-
gram executes. This allows the compiler to determine which threads
are not worth the overhead of creating them.

Our results show that the use of feedback-directed compilation can
be a good source of refinement for the static analysis techniques that
struggle to account for the cost of a computation. This lifts the burden
of ‘is this parallelism worthwhile?’ away from the static phase of
compilation and to the runtime, which is better equipped to answer
the question.

ii

TA B L E O F C O N T E N T S

Abstract ii

Table of Contents iii

List of Figures vi

List of Tables viii

Acknowledgements ix

Declaration x

1 introduction 1

1.1 Lazy Languages and Parallelism 2

1.2 Goals and Contributions of this Thesis 4

1.3 Thesis Roadmap . 4

I The Idea 5

2 parallelism in a functional language 7

2.1 A Short History of Graph Reduction 7

2.2 Functional Programming and Parallelism 9

2.3 Sequential Reduction Machines 10

2.4 Parallel Reduction Machines 15

2.5 Approaches to Parallelism 16

2.6 Summary of the Chapter 29

3 bird’s eye view of our technique 31

3.1 F-lite: a Lazy Purely Functional Core Language 31

3.2 Overview of the Compiler 38

3.3 Summary . 45

II The Discovery and Placement of Safe Parallelism 46

4 finding safe parallelism 47

4.1 Original Motivation vs. Our Motivation 49

4.2 Overview . 49

iii

4.3 Two-Point Forward Analysis 53

4.4 Four-Point Forward Analysis 61

4.5 Projection-Based Analysis 70

4.6 Summary . 81

5 derivation and use of parallel strategies 82

5.1 Expressing Need, Strategically 83

5.2 Deriving Strategies from Projections 85

5.3 Using Derived Strategies 89

III Experimental Platform, Benchmark Programs, and

Results 93

6 experimental platform 94

6.1 Defunctionalisation (Higher-Order Specialisation) . . . 95

6.2 Keeping Track of all the Threads 98

6.3 Trying for par: Switching off Parallelism 100

6.4 Benchmark Programs . 101

7 run-time directed search 103

7.1 Heuristic Algorithms . 103

7.2 Research Questions . 107

7.3 Experimental Setup and Results 108

7.4 Summary of Bitstring Searching 114

8 profile directed search 115

8.1 par-Site Health . 116

8.2 Search Algorithm . 117

8.3 Experimental Results and Discussion 118

8.4 Transfer to GHC . 124

8.5 Limitations . 125

8.6 Summary of Profile-Directed Search 127

IV Conclusions and Future Directions 130

9 conclusions 131

10 future directions 134

10.1 Specialising on Depth 135

10.2 Hybrid Approaches . 137

10.3 Automating Pipeline Parallelism 137

iv

Appendices 139

a benchmark programs 139

a.1 SumEuler . 139

a.2 MatMul . 140

a.3 Queens . 141

a.4 Queens2 . 142

a.5 SodaCount . 144

a.6 Tak . 147

a.7 Taut . 148

b lazify expressions 151

v

L I S T O F F I G U R E S

Figure 1 Eager and Lazy evaluation order for squaring
a value. 10

Figure 2 G-Code execution example 11

Figure 3 Simple parallel graph reduction model 15

Figure 4 Call-by-value reduction 33

Figure 5 Call-by-name reduction 33

Figure 6 Call-by-need reduction 34

Figure 7 Normal order reduction 34

Figure 8 Eager (left) and Lazy (right) evaluation order
for const . 35

Figure 9 Abstract Syntax for F-lite 37

Figure 10 Source listing for Tak 39

Figure 11 Source listing for Tak after analysis, transfor-
mation, and par placement 39

Figure 12 Semantics of seq and par. 51

Figure 13 Flat Domain . 55

Figure 14 Two-point Domain 55

Figure 15 The meet (u) and join (t) for our lattice 56

Figure 16 An Abstract Semantics for Strictness Analysis
on a Two-Point Domain 57

Figure 17 Domain for pairs of flat-domain values 62

Figure 18 Wadler’s Four-point Domain 64

Figure 19 Definition of cons# for a Four-Point Domain . 64

Figure 20 Modification to A for List Constructors 65

Figure 21 Abstraction of Case Expressions on Lists . . . 67

Figure 22 Abstract Syntax for Contexts of Demand . . . 73

Figure 23 Projections for the 4-point Domain 75

Figure 24 Conjunction and Disjunction for Projections 1 76

Figure 25 Conjunction and Disjunction for Projections 2 77

Figure 26 Conjunction and Disjunction for Projections 3 78

Figure 27 Projection-based Strictness Analysis 80

Figure 28 Using Evaluation Transformers 85

Figure 29 Rules to generate strategies from demand con-
texts . 86

Figure 30 Defunctionalisation Rules 99

vi

Figure 31 Speedups against number of fitness evaluations
for Queens2 and SodaCount 113

Figure 32 Statistics on the number of reductions carried
out by the threads a par site sparks off 116

Figure 33 SumEuler speedup 122

Figure 34 Queens speedup 122

Figure 35 Queens2 speedup 123

Figure 36 Taut speedup 123

Figure 37 A tree representation of a recursive computation135

Figure 38 Lazify an F-lite Expression 151

vii

L I S T O F TA B L E S

Table 1 Performance of Tak with different par settings 44

Table 2 Analysis of length# and sum# Using 4-point
Domains . 68

Table 3 Analysis of append# xs# ys# Using 4-point Do-
mains . 69

Table 4 The Evaluation Transformer for append 84

Table 5 Results from using heuristic search 111

Table 6 Profile-Directed Search with an overhead of 10
reductions . 120

Table 7 Profile-Directed Search with overheads of 100
reductions . 120

Table 8 Profile-Directed Search with an overhead of 1000
reductions . 120

Table 9 Naive transfer to GHC 124

viii

A C K N O W L E D G E M E N T S

Less than a year ago I was going to quit my PhD. I had struggled
throughout the process and had decided that I was not cut out for it.
It was not the first time I almost quit, and it was not the first time that
Prof. Runciman convinced me to press on and get my work out into
the world. I cannot imagine a better supervisor. I feel grateful every
day that he thought I was worth keeping around.

During my six years in the UK my partner, Danielle, was deported.
It is a testament to her level of support for me that she went through
the process of coming back to the country that deported her so that we
would not have to live apart. It was not easy, but it has been worth it.

My parents have never stopped me from following my curiosity.
You would think that after asking to go to music school and then
switching to CS for grad school they’d make me pick something and
stick with it. I am so thankful to have the supportive and understand-
ing parents that I have.

Layla and Mike, for having the cutest baby. I can’t wait to spend
more time with you three.

The members of York’s PLASMA group have been a constant source
of joy and knowledge. I owe them many thanks. Matt Naylor, who
patiently answered all my silly questions during my first year. Jason
Reich, who was always enthusiastic about everyone’s work. Chris
Bak for empathising with my PhD progress and playing board games
with me. Glyn Faulkner for getting me excited about different lan-
guages and technologies. And Rudy and Michael for humoring me
while I pitch them my half-baked language ideas.

Simon Poulding provided tons of insight into heuristic search and
stats. Mike Dodds for keeping his door open to me.

Ian, Gary, Jamie, and Gareth always made me feel welcome when
I would intrude on RTS breaks. Russell for understanding that some-
times I just want to watch TV and vent. Jimmy for always hearing me
out and his steadfast confidence in me. Alan for his joke. Sam and
Dani for always being such gracious hosts.

Rich, Chris, and Tara for helping me feel less homesick.
Danielle again, for putting up with who I am but always helping

me be better.

ix

D E C L A R AT I O N

I, José Manuel Calderón Trilla, declare that this thesis is a presenta-
tion of original work and I am the sole author. This work has not
previously been presented for an award at this, or any other, Univer-
sity. All sources are acknowledged as references.

Earlier versions of parts of this thesis were published in the follow-
ing papers:

1. José Manuel Calderón Trilla and Colin Runciman: Improving
Implicit Parallelism in Haskell ’15: Proceedings of the 2015 ACM
SIGPLAN Symposium on Haskell, pg 153-164, ACM, 2015

2. José Manuel Calderón Trilla, Simon Poulding, and Colin Runci-
man: Weaving Parallel Threads in SSBSE ’15: Search-Based Soft-
ware Engineering, pg 62-76, Springer, 2015

The first paper was conceived, implemented, and written by myself
with significant guidance and input from Prof. Runciman.

The second paper’s central idea was my own. Prof. Runciman,
Simon Poulding, and myself developed the ‘plan of attack’. I then
implemented the experimental platform and ran the experiments. Si-
mon Poulding performed the statistical analysis of the results. The
paper itself was written jointly by Simon Poulding and myself.

x

1
I N T R O D U C T I O N

The always dubious “feed in an arbitrary program and watch it
run faster” story is comprehensively dead.

– Peyton Jones [1999]

There is a very common refrain that programmers use. It goes some-
thing like this: “If you want a [X] program, you must [Y]”. We can
choose appropriate X’s and Y’s to prove a point about the difficulty
of programming. Here are some common examples:

• “If you want a fast program, you must write it in C”

• “If you want an efficient program, you must write it in assem-
bler”

• “If you want a performant program, you must use cache-conscious
structures”

• “If you want a parallel program, you must write a parallel pro-
gram”

This thesis is concerned with the last of these examples. What
does it mean? For many, the idea that a compiler can automatically
parallelise a program that was written in a sequential manner is a
pipe-dream. This version of the refrain attempts to emphasise the
point that utilising parallelism requires active thought and action by
the programmer, we can not get parallelism ‘for free’.

We seek to show that this is not always the case. We do this by
attempting the inverse of the refrain: writing a compiler that is able
to take a sequential program and transform it into a better performing1

parallel program. A system that can achieve this goal is said to take
advantage of a program’s implicit, or inherent, parallelism.

Implicit Parallelism
The potential parallelism that is present in a program without

1 This is key!

1

the need for any annotations, calling of parallel functions, or
use of parallel libraries.

It is worth noting that this is no longer the standard meaning [Be-
likov et al., 2013]. Increasingly, researchers take implicit parallelism
to mean semi-implicit parallelism. Under their meaning implicit par-
allelism often refers to techniques that provide parallelism for a pro-
grammer through an abstract interface. We feel that implicit paral-
lelism should refer to techniques requiring zero input from the pro-
grammer, and we will use semi-implicit parallelism to refer to tech-
niques that require the programmer to opt in.

1.1 lazy languages and parallelism

Advocates of purely functional programming languages often cite
easy parallelism as a major benefit of abandoning mutable state [Hughes,
1983; Peyton Jones, 1989]. This idea drove research into the theory
and implementation of compilers that take advantage of implicit par-
allelism in a functional program. Additionally, when research into
implicit parallelism was more common, the work was often based on
novel architectures or distributed systems, not commodity hardware
[Peyton Jones et al., 1987; Hammond and Michelson, 2000].

Despite this research effort, the ultimate goal of writing a program
in a functional style and having the compiler find the implicit par-
allelism still requires work. We believe there are several reasons
why previous work into implicit parallelism has not achieved the
results that researchers hoped for. Chief amongst these is that the
static placement of parallel annotations is not sufficient for creating
well-performing parallel programs [Hammond and Michelson, 2000;
Hogen et al., 1992; Tremblay and Gao, 1995; Harris and Singh, 2007].
This work explores one route to improvement: the compiler can use
runtime profile data to improve initial decisions about parallelism in
much the same way a programmer would manually tune a parallel
program.

In the case of custom hardware, research was unable to keep up
with huge improvements in sequential hardware. Today most com-
mon desktop workstations are parallel machines; this steers our moti-
vation away from the full utilisation of hardware. Many programmers
today write sequential programs and run them on parallel machines.
We argue that even modest speedups are worthwhile if they occur
‘for free’.

2

Historically Moore’s law has often provided a ‘free lunch’ for those
looking to run faster programs without the programmer expending
any engineering effort. Throughout the 1990s in particular, an ef-
fective way of having a faster x86 program was to wait for Intel™
to release its new line of processors and run the program on your
new CPU. Unfortunately, clock speeds have reached a plateau and
we no longer get speedups for free [Sutter, 2005]. Increased perfor-
mance now comes from including additional processor cores on mod-
ern CPUs. This means that programmers have been forced to write
parallel and concurrent programs when looking for improved wall-
clock performance. Unfortunately, writing parallel and concurrent
programs involves managing complexity that is not present in single-
threaded programs. The goal of this work is to convince the reader
that not all hope is lost. By looking for the implicit parallelism in pro-
grams that are written as single-threaded programs we can achieve
performance gains without programmer effort.

Our work focuses on F-Lite [Naylor and Runciman, 2010]: a pure,
non-strict functional language that is suitable as a core language of a
compiler for a higher-level language like Haskell. We have chosen to
use a non-strict language because of the lack of arbitrary side-effects
[Hughes, 1989], and many years of work in the area of implicit paral-
lelism [Hogen et al., 1992; Hammond, 1994; Jones and Hudak, 1993]
however we feel that many of our techniques would transfer well to
other language paradigms.

With the choice of a lazy functional language we introduce a ten-
sion, the evaluation order for lazy languages can be seen to be at odds
with the goal of only evaluating expressions when they are needed
(which is an inherently sequential evaluation order). For this reason
we must use strictness analysis in order to statically determine what ex-
pressions in a program are definitely needed, allowing us to evaluate
them in parallel. We note that even eager languages would require
some form of analysis because eager languages tend to allow arbi-
trary side-effects, necessitating the careful introduction of parallelism
in order to avoid altering the order-dependent semantics of eager pro-
grams.

In short, this work argues that static analysis is necessary but not
sufficient for the automatic exploitation of implicit parallelism. We
argue that some form of runtime feedback is necessary to better utilise
the parallelism that is discovered via static analysis.

3

1.2 goals and contributions of this thesis

The primary contribution of this thesis is to demonstrate that using
search techniques based on dynamic execution of an automatically
parallelised program is a robust way to help diminish the granularity
problem that is difficult for static analysis to overcome.

Our contributions can be seen as follows:

• A method to automatically derive parallel strategies from a de-
mand context

• A novel use of heuristic search techniques in representing the
possible parallelism in a program as a multi-dimensional search
space

• The use of runtime profiles to disable automatically introduced
parallelism in a program

We show that for some programs, the combination of search and
static analysis can achieve speed-ups without the need for program-
mer intervention.

1.3 thesis roadmap

The thesis is divided into three broad parts:
Part I explores the central concepts and the overall idea. In Chapter

2 we review the work on parallel functional programming, discussing
the benefits and drawbacks to different approaches of writing (or not
writing!) parallel programs. Chapter 3 provides an overview of our
technique and a standard vocabulary for the rest of the work.

Part II is devoted to the static aspects of our approach. This in-
cludes a review of strictness analysis and the motivation for utilising
a projection-based analysis in Chapter 4. We present our technique
for exploiting the results of strictness analysis in Chapter 5.

In Part III we first describe our experimental platform in Chapter
6, then discuss two experiments: Chapter 7 experiments with using
heuristic search techniques based on the overall runtime of a pro-
gram and in Chapter 8 we provide the compiler with access to more
detailed runtime profiles.

Lastly, Part IV discusses our conclusions (Chapter 9) and possible
future work (Chapter 10).

4

Part I

The Idea

5

6

2
PA R A L L E L I S M I N A F U N C T I O N A L L A N G U A G E

Fully automatic parallelization is still a pipe dream.
– Marlow [2013]

This chapter explores previous approaches to parallelism in a func-
tional language, both implicit and explicit. We do this so that we may
better understand the trade-offs we accept when utilising implicit par-
allelism and the difficulties involved.

Plan of the Chapter

The chapter is organised as follows. We begin in Section 2.1 by giving
a brief overview of the history of graph reduction as a method for the
execution of functional programs. Section 2.2 discusses the benefits
that functional languages provide for parallelisation; we will focus on
call-by-need (or lazy) semantics. We then explore the various meth-
ods for the implementation of lazy languages for sequential machines
in Section 2.3. Understanding how lazy languages can be executed
we will then show in Section 2.4 how the techniques can be extended
to allow for parallel execution.1 We then turn our attention to the
programmer’s view of parallelism in a lazy language. Section 2.5
explores the current state of the art for parallel programming (both
explicit and implicit parallelism) in a lazy functional language. We
also explore the explicitly parallel techniques because they inform the
way we approach implicit parallelism.

2.1 a short history of graph reduction

1978 Turing Award winner, John Backus, used his acceptance speech
to ask the question: “Can Programming be liberated from the von
Neumann Style?” [Hudak et al., 2007]. The crux of his argument

1 One of the nice things about side-effect-free languages is that this step is not too
difficult.

7

was that the traditional and ubiquitous architecture of the day was
not suitable for the eventual shift to parallelism and the performance
gains that could be achieved through parallelism’s use. This fed the
interest in novel computer architectures that would more readily sup-
port parallelism.

More declarative languages, and particularly functional languages,
were seen as being better suited to Backus’ challenge than more tra-
ditional imperative languages. This is because many imperative lan-
guages were designed for the simplicity of compilation. They free the
programmer from repetitive bookkeeping, such as saving registers for
function calls and saving the intermediate computations in an expres-
sion, but do not conceal all aspects of the underlying machine. Most
crucially, they allow arbitrary mutation and side-effects. This limits
the amount of parallelism possible because the result of a function
call can depend on more than the values of the passed arguments.

Work had already been carried out on non-von Neumann architec-
tures before that time. However, much of it was in the form of abstract
machines that functioned ‘on top’ of the von Neumann architecture
[Turner, 2012].

In the early 1970s the idea of graph reduction is introduced [Wadsworth,
1971] and with it, the concept of lazy evaluation was ready to be for-
malised. Lazy evaluation has its roots in papers by Henderson and
Morris, and Friedman and Wise [Turner, 2012]. People began to think
of ways to better implement graph reduction machines. A big break-
through for software reduction was Turner’s SKI-Combinator reduc-
tion scheme in 1979 [Turner, 2012; Clack, 1999].

In the 1980s we saw a great interest in parallel architectures for
functional languages. The two main conferences in the field were
‘LISP and Functional Programming’ (which was held on even years)
and ‘Functional Programming and Computer Architecture’ (which
was held on odd years).

Several novel architectures were developed with the hopes that they
could surpass stock hardware in their performance. This line of re-
search continued through the 1980s and into the early 1990s [Harri-
son and Reeve, 1987; Peyton Jones et al., 1987; Clack, 1999; Hammond,
1994].

The G-Machine in 1984 showed that lazy functional languages (which
had always been considered inefficient and bound to being inter-
preted) could be implemented in an efficient manner on stock hard-
ware via the compilation of supercombinators to machine code. How-

8

ever, the abstract machine could also be used in the implementation
of a novel architecture itself [Augustsson and Johnsson, 1989a].

The 1990s saw a decline in the amount of research aimed at parallel
functional programming. This was mainly due to the results from
earlier research being less successful than had been hoped (some
novel architectures did see good results, but they could not keep
up with the improvements seen in the sequential hardware sphere)
[Hammond, 1994; Clack, 1999].

The late 1990s and the 2000s saw a resurgence in the interest in par-
allel functional programming because of the ubiquity of multi-core
computers today. Generally, many of the techniques discussed ear-
lier are used, (GHC using the STG-Machine, for example) [Goldberg,
1988; Harris et al., 2005].

While still suffering from the von Neumann bottleneck, using mul-
tiple cores in lazy functional languages is widely considered to be a
success. Many high-level abstractions have been introduced that pro-
vide the programmer with powerful tools to exploit their multi-core
systems. Strategies [Trinder et al., 1998], parallel skeletons [Ham-
mond and Rebón Portillo, 2000], the Par-Monad [Marlow et al., 2011],
and Repa [Keller et al., 2010] are among the most prominent suc-
cesses. We will explore these in more depth in Section 2.5.

2.2 functional programming and parallelism

Research into parallelism in lazy purely functional languages has a
long history that dates back to the early work on lazy functional lan-
guages [Hughes, 1983; Augustsson and Johnsson, 1989b; Plasmeijer
and Eekelen, 1993; Peyton Jones, 1989].2

We are able to illustrate the issue with a simple example. The two
reductions of sqr in Figure 1 illustrate the key differences between
lazy evaluation and eager, or strict, evaluation.

In the case of eager evaluation the argument to sqr is evaluated
before entering the function body. For lazy evaluation the argument
is passed as a suspended computation that is only forced when the
value is needed (in this case when x is needed in order to multiply
x ∗ x). Notice that under lazy evaluation 5 ∗ 5 is only evaluated once,
even though it is used twice in the function. This is due to the sharing
of the result. This is why laziness is often described as call-by-need
with sharing [Hammond and Michelson, 2000].

2 For a comprehensive review we suggest [Hammond and Michelson, 2000]

9

Eager Evaluation

sqr (5 ∗ 5)
= sqr 25

= let x = 25 in x ∗ x
= 25 ∗ 25
= 625

Lazy Evaluation

sqr (5 ∗ 5)
= let x = 5 ∗ 5 in x ∗ x
= let x = 25 in x ∗ x
= 25 ∗ 25
= 625

Figure 1: Eager and Lazy evaluation order for squaring a value.

In the case of sqr in Figure 1, both eager and lazy evaluation re-
quired the same number of reductions to compute the final result. This
is not always the case; take the following function definitions

bot :: Int → Int

bot x = x+ botx

const :: a → b → a

const x y = x

In an eager language the expression const 5 bot will never ter-
minate, while it would return 5 in a lazy language as only the first
argument to const is actually needed in its body.

2.3 sequential reduction machines

2.3.1 G-Machine

Unlike conventional register machines, theG-Machine is a stack-based
machine designed to perform normal order graph reduction. The key
point for the G-Machine [Augustsson and Johnsson, 1989a] is that
it extended the idea that Turner introduced with the compilation of
functional programs to SKI combinators. But instead of relying on
pre-determined combinators, why not use the high-level declarations
defined by the programmer? By compiling code for each of these, we
are able to produce efficient code for each top-level function, whereas
before we only had efficient code for each pre-determined combina-
tor. These top-level function definitions were coined supercombinators

10

@

3@

Add 2

@

3@

Add 2

New Stack Frame
(After an Eval) Unwind

@

3@

Add 2

Unwind
(Having reached a
global, we load its

code)

@

3@

Add 2

Push 1

@

3@

Add 2

Push 1

@

3@

Add 2

Add

5

3@

Add 2

Update 2

5

#

3@

Add 2

Pop 2

5

#

a) b)

c)

e)

g)

d)

f)

h)

Figure 2: Walk-through of the G-Code for Add 2 3

by Hughes [Hughes, 1983]. Each supercombinator is required not to
contain any lambdas on the right-hand side. In order to accomplish
this for the G-Machine, Augustsson and Johnsson expanded on the
lambda-lifting technique first outlined by Hughes [Augustsson and
Johnsson, 1989a; Hughes, 1983].

Each supercombinator is compiled to what is essentially a reverse
postfix notation for the right-hand side of the function definition.
The resulting code constructs the graph representation of the func-
tion body and then reduces that graph to weak head normal form
(WHNF).

In Figure 2 we walk through a simple G-Machine reduction. At
(a) we have a reduction about to take place, the top of the stack is
pointing to the root of the expression. In (b) the GCode instruction
Unwind is executed, placing a pointer to the application node’s func-
tion value on the stack. Unwinding continues until a global function
is encountered. When unwind reaches a global function, as in (c),
the G-Machine loads the code for that function and executes it. The

11

code for Add is Push 1, Push 1, Add, Update 2, Pop 2, Unwind3. The
first three instructions are what actually add the two arguments, with
the last three instructions being used to update the graph and begin
unwinding again. Push 1 pushes a pointer to the argument of the
application node pointed to by the address located at stack address 1

(the stack addressing starts at 0). This is done twice at (d) and (e) in
order to have pointers to both arguments at the top of the stack. Then
we have the Add instruction which dereferences the top two pointers
and adds the resulting values, the resulting value is then pushed onto
the stack; this is seen at (f). With the result now on the stack, updating
takes place, (g). The Update instruction takes a value (which is the
arity of the function being evaluated) and updates the stack pointer
that originally pointed to the root of the expression. The pointer is
replaced by an indirection node, which, in turn, is set to point to the
same value as the top stack pointer. With the updating finished the
expression’s original graph is no longer needed. Therefore, we can
pop all of the intermediate pointers on the stack, which will always
be equal to the arity of the expression. At (h) we are left with the
updated pointer that can now be used by the calling function. We ex-
ecute the Unwind instruction again, entering the G-Machine into its
unwind state, which will ensure that proper stack dumping occurs
when there is nothing left to evaluate (such as in this case).

2.3.2 Spineless G-Machine

The standard G-Machine updates the shared graph after every reduc-
tion step. While this is conceptually simple and easy to implement,
such frequent rewrites in the heap can be seen as wasteful. The Spine-
less G-Machine improves on this by only updating the graph when
loss of sharing is a possibility [Burn et al., 1988]. It is known as
‘spineless’ because the chain of application nodes that would make
up the spine in the standard G-Machine is not built up in the heap.
Instead it is exclusively accumulated on the stack until an update is
required. The key point in this variant of the G-Machine is that up-
dating should be associated with the potential loss of sharing and not
with a reduction [Burn et al., 1988].

3 This version of Add will only work with primitives as its arguments. In order to
accept expressions there would need to be an Eval instruction added after every
Push.

12

The way this was accomplished was by adding a new type of ap-
plication node called a “SAP” node (for shared application). A SAP
node indicates that the node is ‘updatable’ and that the result of any
reduction at that node should be updated in the graph.

The mechanism for the updates is slightly different for functions
than it is for values. First let us look at how functions are handled.
When a SAP node is pushed onto the stack during an unwinding a
new stack frame is created. When a pointer outside of the bounds of
the stack frame is required we can take this as a signal that the reduc-
tion occurring at the updatable node has resulted in a function that
‘fails’ the arity test. We then rewrite the subgraph at the SAP node
since we know that sharing could be lost if we continued otherwise.
For values the update is triggered when the value has been reduced
to its base-value form.

The remaining task for the Spineless G-Machine is to determine
which application nodes should be a SAP node, and which should
be a standard AP node. The authors give three different strategies
for identifying which nodes should be marked as SAP. The simplest
strategy is that all nodes should be marked as sharing nodes; this
ensures that no sharing will be lost but will find the same wasteful
re-writing that the standard G-Machine exhibited. The next strategy
involves simple static sharing analysis to identify the nodes where
the arguments will definitely not be shared, so all other nodes are
marked as sharing nodes. Lastly, a dynamic method is suggested
that attempts to identify as few sharing nodes as possible, subject
to safety (therefore minimising the re-writing) while adding an over-
head cost of having to check when a shared subgraph is created. The
authors call this mechanism “dashing” and argue that the savings of
having as few re-writes as possible make the overhead cost of dashing
worthwhile [Burn et al., 1988].

2.3.3 STG-Machine

A few years after the design of the Spineless G-Machine, another en-
hancement was introduced, the Spineless Tagless G-Machine. This
descendant of the G-Machine is a fully realised Spineless G-Machine
that eliminates the need for tagged nodes by using a uniform rep-
resentation for all values in its graph representation. All values are
represented on the heap as closures.

13

Each closure consists of a code pointer and zero or more pointer
fields used to point to the values of free variables. The code the clo-
sure points to is what determines the behaviour of that node in the
graph. When the code for a closure is entered, the free variables can
be accessed via an environment pointer that points to the original
node in the graph (which has the pointer fields mentioned above)
[Peyton Jones, 1992]. Because there is no tag on a node, the only
way of determining the purpose of the node is to enter the closure.
As expressed by Peyton Jones “each closure (including data values)
is represented uniformly, and scrutinized only by entering it.” [Pey-
ton Jones, 1992].

The STG-Machine uses the self-updating model when having to
update a subgraph. Instead of updating after every reduction, as in
the G-Machine, each closure is responsible for updating itself when
an update is necessary. In the case of a thunk, entering the closure
will result in the thunk being overwritten and the resulting closure’s
code will simply return the value that has already been evaluated.

The STG-Machine became the basis for GHC and has had many
improvements over the years [Hudak et al., 2007]. Interestingly, one
of the improvements to the STG-Machine was the introduction of tags.
The elegance of being able to treat every node the same has a cost
on the performance on modern architectures [Marlow et al., 2007].
Because so much of the performance in modern CPUs comes from
the speed of its cache (therefore avoiding the memory bottleneck) the
indirections that arise from the code pointers in each closure have a
significant cost on performance. As stated in the introduction to their
2007 paper [Marlow et al., 2007]:

The tagless scheme is attractive because the code to eval-
uate a closure is simple and uniform: any closure can be
evaluated simply by entering it. But this uniformity comes
at the expense of performing indirect jumps, one to enter
the closure and another to return to the evaluation site.
These indirect jumps are particularly expensive on a mod-
ern processor architecture, because they fox the branch-
prediction hardware, leading to a stall of 10 or more cycles
depending on the length of the pipeline.

As much as we would like to focus on elegant abstractions and
distance ourselves from any low-level concerns, there will always be

14

Task

Pool

Graph

G-Machine G-Machine G-Machine G-Machine

Figure 3: A parallel G-Machine

some focus on performance, and that will sometimes require compro-
mises to accommodate hardware realities.

2.4 parallel reduction machines

Having looked at the G-Machine as a sequential abstract machine we
can now look at how graph reduction can occur on parallel architec-
tures. The simplest parallel variant would be a parallel G-Machine. It
turns out that once a sequential graph reduction has been accounted
for there is not much to add in order to provide facilities for parallel
evaluation. If one were to use a shared graph then almost all commu-
nication could take place via that graph.

The spark pool4 is where idle processors can look for subgraphs
that have been sparked off for evaluation. This simple-yet-functioning
model is actually the basis for the implementation described in chap-
ter 6 [Peyton Jones and Lester, 1992]. This model is not specific to
the G-Machine, but can be used with any of the graph reduction
machines, indeed GHC uses a similar model that is extended with
thread-local heaps [Marlow et al., 2009]. A worker thread allocates
from its local heap, when a thread’s heap has overflowed the garbage
collector stops all running threads and moves local-heap data to the
shared heap.

4 A spark is a pointer to an expression that has the potential to be executed in parallel.
This allows the runtime system to ‘throttle’ the amount of parallelism in a program,
when utilisation of the parallel machines is low, sparks are more likely to ‘catch’ than
when utilisation is high [Clack and Peyton Jones, 1986].

15

2.4.1 〈ν,G〉-Machine

A departure from the stack-based approach of the G-Machine, here
we have a packet-based abstract machine [Augustsson and Johnsson,
1989b; Harrison and Reeve, 1987]. The packets (or frames as they are
called in the original paper) are similar to the closures we have seen
for the STG-Machine (although the 〈ν,G〉-Machine was described and
implemented first [Augustsson and Johnsson, 1989b]). One difference
is that on top of the code pointer and pointer to its arguments, each
node contains a dynamic pointer that points to the caller of the ex-
pression the packet represents. Each node also contains a block of
free ‘working space’ in each packet (we will see why in a moment).
The key difference is the way that the 〈ν,G〉-Machine deals with its
stack. As opposed to having a central stack, each packet has its own,
using the free space allocated with the creation of the packet as its
local stack. Therefore the stack for a task is always in the heap with
the task itself [Augustsson and Johnsson, 1989b]. This is in contrast
to the standard G-Machine, where the stack resides ‘in’ the machine
itself and the tasks use that stack until they are blocked, at which
point the task’s stack is transferred to the heap until the task is awo-
ken. The 〈ν,G〉-Machine avoids any complications of dealing with the
stack by distributing the stack amongst the graph. The stack frame at
any point in the graph is accessed through the linked list of packets
pointing to their caller.

2.5 approaches to parallelism

When looking at parallel programming, it is important to make the
distinction between concurrency and parallelism. Concurrency em-
bodies the idea of multiple workers (threads, computers, agents, etc.)
making progress on independent tasks. A standard example for con-
currency is a modern web-server. Each connection to the web-server
can be thought of as an independent sub-task of the program. The
web-server does not have to be run on a multi-core machine for the
concurrency to take place. A single-core machine is capable of run-
ning concurrent threads through scheduling and context switching.

Parallelism describes the simultaneous execution of tasks with the
purpose of achieving a gain in performance. Tasks that can be easily
divided into independent sub-tasks can easily be made into parallel
algorithms. For example, if one wanted to compute the monthly av-

16

erage temperature for a given year, each month could be computed
independently. If enough of these independent computations happen
simultaneously there can be a substantial improvement in the pro-
gram’s wall-clock speed. Ideally, the increase in performance would
scale at the same rate as the available parallel machinery (2x per-
formance with two processors, 5x performance with 5 processors).
Unfortunately, there are some unavoidable factors that prevent this
ideal from being realised [Hughes, 1983; Hudak et al., 2007; Ham-
mond, 1994]. The most basic fact preventing this ideal is that the
executing machinery (whether virtual or physical) will necessarily in-
troduce some overhead in the generation and management of paral-
lel threads of execution [Peyton Jones and Lester, 1992]. Beyond that,
it is unusual for a program to be perfectly parallel except in trivial
cases. Most parallel programs exhibit non-uniform parallelism and
complex data dependencies. This results in programs where parallel
threads vary greatly in their processing time and contain threads of
execution that will depend on the results of other threads. This re-
sults in threads having to wait for the result of another thread before
commencing (known as blocking).

2.5.1 Haskell

Haskell is a lazy functional language benefiting from constant devel-
opment since its inception in 1987

5 [Hudak et al., 2007; Jones, 2003].
Haskell as defined by the Haskell Report [Jones, 2003] does not fea-
ture parallelism as part of the language. However, functional pro-
gramming has a long history of parallel implementations and Haskell
is no different in this regard. Even the early implementations of
Haskell had facilities for parallel computation.

haskell parallelism The Glasgow Haskell Compiler (GHC)
has extensive parallelism and concurrency support; this is part of
what makes the compiler a popular implementation [Hudak et al.,
2007]. While our eventual goal is to have access to compilers that
take advantage of the implicit parallelism in our programs, it is use-
ful to understand the tools and libraries that enable programmers to
use explicit parallelism in their Haskell programs. Some of these tech-

5 1987 was when the academic community decided that an ‘standard’ language was
needed to unify the study of lazy functional programming[Hudak et al., 2007], how-
ever, the first Haskell report was not published until 1990 [Jones, 2003]

17

niques are well-established and have decades of use and experience
to draw from.

2.5.2 Explicit Parallelism with par and seq

The most popular Haskell compiler, GHC [Hudak et al., 2007], is
able to compile and run parallel Haskell programs ‘out of the box’.
This ability is limited to the shared memory processors, also known as
symmetric multiprocessors (SMP), that are nearly ubiquitous with the
rise of multi-core architectures in modern CPUs. The GHC project
provides several ways to utilise parallel-capable machines.

The first method is through the par and seq6 combinators. The seq
combinator has the following type.

seq :: α → β → β

An expression of the form seq a b first forces the evaluation of its
first argument to WHNF7 and then returns its second argument. This
allows a programmer to express sequential evaluation.

It is important to realise that GHC’s implementation of seq is not
guaranteed to force the evaluation of its first argument before its sec-
ond argument, though it does guarantees that seq ⊥ b results in ⊥.
The compiler may find an optimisation that circumvents the sequenc-
ing created by the combinator. In order to provide a combinator that
does provide this guarantee GHC provides the pseq8 combinator.

In the literature, the par combinator appears in one of two forms
[Hudak et al., 2007; Hughes, 1983]. In order to differentiate between
the two forms we will refer to the earlier version as the applicative par,
or parAp and the more recent (and more common) version as Haskell
par.9

Haskell par takes the same form as seq and has the same type sig-
nature. The combinator takes two arguments, sparks off the first for
evaluation in parallel, and returns the second.

6 While seq was introduced into Haskell for Haskell ’98 [Jones, 2003] it was used for
many years before that [Hudak et al., 2007]. One of the earliest descriptions was by
Hughes who introduced a synch combinator that performed the same function in
1983 [Hughes, 1983].

7 For an expression to be in Weak Head Normal Form it must be evaluated such that
the outermost constructor is known, but not necessarily any further. To say that a
function is in WHNF means that the function is partially applied.

8 The ‘p’ in pseq stands for parallel. The idea being that parallel programs are more
likely than sequential programs to require that seq guarantees its behaviour.

9 The reason we will be referring to this as Haskell par is because most users will
know this version of the combinator from their use of Haskell

18

par :: α → β → β

par a b = b

The applicative parAp expresses a function application whose pa-
rameter has been sparked off to be evaluated in parallel. Semantically,
this means that the applicative par has the following form

parAp :: (α → β) → α → β

parAp f x = f x

Interestingly, the version of par that an implementation chooses
does not change the expressiveness. Each version of par can actually
be defined in terms of the other. Defining the applicative par in terms
of Haskell par gives us

parAp f x = par x (f x)

In order to define Haskell par in terms of applicative par we must
use the K combinator

K x y = x

par x y = parAp (K y) x

The benefit of parAp is that you get the sharing of the parallel com-
putation without needing to give a name to a subexpression. For
example, the following use of parAp is very typical.

parAp f (g 10)

This does as you would expect: evaluate g 10 and share that with
f . In order to achieve the same effect using Haskell par we must give
g 10 a name.

let
x = g 10

in
par x (f x)

While language implementors may have strong preferences for one
over the other, there are a few good arguments for the use of Haskell
par. Haskell par is the simpler of the two versions, using it as an infix
combinator makes it easy to spark an arbitrary number of expressions
easily, a ‘par‘ b ‘par‘ c, and the use-case for applicative par can be easily
expressed using Haskell par, as shown above.

19

writing a program with par and seq Now that we have
our essential combinators we are able to define a parallel algorithm.
One of the big sellers of functional programming is the wonderfully
concise quicksort definition

quicksort :: (Ord α) ⇒ [α] → [α]

quicksort (x : xs) = lesser ++ x : greater
where

lesser = quicksort [y | y ← xs, y 6 x]
greater = quicksort [y | y ← xs, y > x]

quicksort = []

The obvious way to parallelise this algorithm is to ensure that each
of the two recursive calls can be executed in parallel. This is a com-
mon form of parallelism known as ‘divide and conquer’ [Hammond
and Rebón Portillo, 2000]. This can be done by changing the second
line to

quicksort (x : xs) = greater ‘par‘ (lesser ++ x : greater)

The issue with the above is that while the left-hand side is sparked
off in parallel, it will only be evaluated to WHNF if the spark catches.
This will result in only the first cons of the list. The rest of the list will
only be evaluated if/when greater is needed.10 This fails to exploit all
of the parallelism we desire and highlights the sometimes conflicting
nature of parallelism and laziness.

In order to help us attain the parallelism we are aiming for, we can
introduce a function force that ensures that its parameters are evalu-
ated fully. As found in the textbook “Real World Haskell” [O’Sullivan
et al., 2009]

force :: [α] → ()

force list = force ′ list ‘pseq‘ ()
where

force ′ (: xs) = force ′ xs
force ′ [] = ()

This function takes a list and enforces spine-strictness. As long as
the list is not an infinite structure, the use of this function is safe.
With this function in hand we could adapt our basic parallel quicksort
into a better performing one.

An interesting point is that this definition of force can be much
simpler:

10 Because of laziness it is possible that greater will never be needed. An example
would be if only the head of the sorted list is requested.

20

force :: [α] → ()

force (: xs) = force xs
force [] = ()

Because the function is fully saturated, the recursive call will con-
tinue evaluating through the entirety of the list. This only goes to
show that even experts sometimes misunderstand when combinators
like seq and pseq are needed.

parQuicksort :: (Ord α) ⇒ [α] → [α]

parQuicksort (x : xs) = force greater ‘par‘ (force lesser ‘pseq‘ (lesser ++ x : greater))
where

lesser = parQuicksort [y | y ← xs, y 6 x]
greater = parQuicksort [y | y ← xs, y > x]

parQuicksort = []

Notice that there were a few more changes than just calling force
with the parallel spark. By also forcing the evaluation of greater and
lesser before appending the two lists we ensure that both greater and
lesser are constructed completely. While this version of a parallel
quicksort does execute its recursive calls in parallel, it has come at
a cost. First, the resulting list is no longer lazy. Using this function
for determining the head of the resulting list would result in the en-
tire list being computed. While the loss of laziness can sometimes be
a worthwhile trade-off (particularly if the entire list will be required
anyway) for an increase in speed, the second major cost is that this
parallel quicksort does not result in a faster program!

Despite the added functions to ensure that laziness did not get in
the way of our desired parallelism, the parallel sorting was actually
slower than the sequential sort. Running a parallel quicksort on a two
core machine, O’Sullivan found that this algorithm actually resulted
in a 23% decrease in performance [O’Sullivan et al., 2009]. The reason
for the slowdown comes up often in the design of parallel algorithms:
there is a minimum amount of work a thread must perform in order
to make the expense of sparking off the thread worthwhile.11 This is-
sue highlights what is known as granularity [Plasmeijer and Eekelen,
1993]. While the sparking of threads is relatively cheap in a system
such as GHC, there is still a cost, and if the amount of work a thread
performs is very little, the cost may not be worth it.

11 On modern multi-core machines there are additional factors that can affect whether
a thread can be worthwhile, cache effects, cost of context switching, etc.

21

One way of tackling this issue is by introducing the notion of depth
to the function. An additional parameter can be be added to the
function that acts as a count for the depth.

parQuicksort (x : xs) depth = if depth 6 0

then
quicksort (x : xs)

else
. . . 〈parQuicksort with (depth - 1)〉

In this version we check to see if the desired maximum depth has
been reached and, if so, then the recursive call is to the standard
sequential sorting algorithm. If the max depth is not reached then
we use the body of the parQuicksort defined above, with the depth
argument to each recursive call being (depth − 1). The desired maxi-
mum depth is determined by the value given as the depth argument
at the top-level call of the function. This method of controlling the
granularity is a useful one and allows for easy experimentation on
the maximum depth for the problem at hand. The downside is that it
contributes yet another concern for the programmer to worry about.

Managing the granularity of a parallel program is one of the big-
ger challenges facing parallel functional programming [Peyton Jones,
1989]. Whether decided by the programmer (with annotations) or by
the compiler implicitly, the question of “is this task worth it?” will
always come up when deciding what tasks should be sparked.

2.5.3 Explicit Parallelism with the Par Monad

One of the main benefits of using par and seq is that they provide
a simple interface for expressing parallel computation without the
need to worry about concurrency issues such as task/thread creation
and synchronisation. Task communication is via the same mecha-
nism that allows for lazy evaluation [Peyton Jones, 1989]. However,
laziness can be difficult to reason about and gaining the maximum
benefit from parallelism can often require the forcing of values be-
yond WHNF, much like what was done with the force function in the
previous section. This motivated another approach to deterministic
parallelism: the Par Monad [Marlow et al., 2011].

The Par Monad makes the following trade-off: for the cost of mak-
ing the dependencies between computations explicit and prohibiting
the use of shared lazy structures, users gain predictable performance

22

and the ability to reason about when evaluation takes place. The
library provides an API for dataflow parallelism in Haskell.

Internally the Par Monad is implemented using I-Structures [Arvind
et al., 1989] in the form of IVars, which provide the mechanism for
communication between tasks. IVar are mutable cells with write-once
semantics. The disciplined use of I-Structures in the Par Monad is
what ensures deterministic parallelism.

To illustrate the data-flow nature of the Par Monad we can use its
API to write a function that computes two calls to fib in parallel (this
code is adapted from Marlow [2013, pg. 59]).

twoFib m n = runPar $ do
i ← new
j ← new
fork (put i (fib m))

fork (put j (fib n))
a ← get i
b ← get j
return (a, b)

The Par Monad provides us with an API that is quite explicit about
the data-flow of the program. This allows the library to schedule
the threads as appropriate. The function put takes an IVar and a
value that can be forced and writes the value to the IVar. By being
so explicit about the structure of the program the library allows for
intuitive reasoning about the parallel performance.

2.5.4 Semi-Implicit Parallelism with Strategies

This section will look at Parallel Strategies to illustrate how a pro-
grammer can write the algorithm they want (for the most part) and
then use strategies to specify how that algorithm should be paral-
lelised. Strategies become central to our technique and are mentioned
throughout this thesis, as they are used as the method of introducing
parallelism into a program.

Strategies came in two waves; the first wave was introduced by
Trinder et al. [1998] in ”Algorithm + Strategy = Parallelism”. This in-
carnation of strategies is simple to understand and easy to use effec-
tively. The second wave was an adaptation of the idea that addressed
an issue caused by the garbage collector, but the main idea remains
the same [Marlow et al., 2010].

23

The type declaration for a Strategy is

type Strategy α = α → ()

The key point to take away from this is that strategies do not, and
can not, affect the value of the computation.

It is possible to define strategies that do not introduce parallelism,
but instead ensure that evaluation is carried out to some degree. For
example, the strategy for doing nothing

r0 :: Strategy a
r0 = ()

And for evaluating the argument to WHNF

rwhnf :: Strategy α
rwhnf x = x ‘seq‘ ()

These strategies are not often used on their own, but are used in
conjunction with other strategies to achieve a goal. For example, ap-
plying a strategy to each element of a list can be expressed as

seqList :: Strategy α → Strategy [α]

seqList strat [] = ()

seqLIst strat (x : xs) = strat x ‘seq‘ (seqList strat xs)

parList :: Strategy α → Strategy [α]

parList strat [] = ()

parList strat (x : xs) = strat x ‘par‘ (parList strat xs)

Both of these functions are common strategies for working on lists.
In the first case, seqList elements in the list are sequentially evaluated
using strat In parList each element is evaluated in parallel using strat
this gives no guarantee of the evaluation order, only that the sparks
will point to each element of the list.

In order to use a strategy, the function using was defined; taking
an expression and a strategy, it bridges the gap between the specified
algorithm and the desired strategy.

using :: α → Strategy α → α

using x s = s x ‘seq‘ x

This allows us to define parMap as

parMap :: Strategy β → (α → β) → [α] → [β]

parMap strat f xs = map f xs ‘using‘ parList strat

With this we can evaluate all the elements of a list to whatever level
the first argument specifies.

24

2.5.5 Semi-Implicit Parallelism with Skeletons

There are many cases where the structure of two programs are the
same even though they are computing different results. As men-
tioned above, quicksort shares a structure with many algorithms known
as ‘divide and conquer’. Algorithmic skeletons allow for the re-use of
structural parallelism between programs [Hammond and Rebón Por-
tillo, 2000].

To a functional programmer, skeletons are higher-order functions
that are passed the computation specific actions of a program and
ensure that the actions are parallelised according to the pre-defined
structural parallelism. Hammond and Rebón Portillo [2000] intro-
duce skeletons for the divide and conquer, farm (like a generic parMap),
pipe, and reduce (like a generic parallel fold) patterns. The divide and
conquer skeleton is defined as follows:

dc triv solve divide conq x
| triv x = solve x
| otherwise = conq (solveAll triv solve divide conq (divide x))

where
solveAll xs =

Collection.map (dc triv solve divide conq) xs ‘using‘ parColl all

The process is rather simple, dc takes a predicate triv that deter-
mines whether the input value, x, is trivial. If so, we use the function
solve for the trivial case. When x is not trivial we must split the prob-
lem into smaller chunks using divide. With the problem divided, we
use solveAll which recursively calls dc in parallel over all of the di-
vided parts of the problem. The parallelism is introduced using a
Strategy in solveAll. Lastly, conq is used to combine the results of the
sub-problems.

There are two restrictions on the use of dc. The first is that the result
be a member of the class Evaluable which has three member functions,
none, outer, and all. These functions correspond to strategies with
various degrees of evaluation: none performs no evaluation of the
value, outer evaluates to WHNF, and all evaluates to normal form.
The second is that the container type must be a member of Coll which
provides a uniform interface for maping over its elements.

Skeletons provide a powerful tool when working with problems
that are known to be parallelisable. If a programmer can recognise
which skeleton is appropriate for their problem domain they can fo-

25

cus on the aspects that are specific to their problem and let the skele-
ton manage the parallelism [Hammond and Rebón Portillo, 2000].

2.5.6 Semi-Implicit Parallelism via Rewriting

Some recent work has shown promising results with the use of rewrit-
ing. The programmer uses pre-selected functions (which is what
makes these techniques semi-implicit) and the compiler uses pre-
defined rewrite rules to convert the high-level function to low level
parallel code [Steuwer et al., 2015]. This technique frees the program-
mer from concerning themselves with the low-level optimisation tech-
niques, which in the case of GPU programming are often vendor spe-
cific. The compiler writers provide different sets of rewrite rules for
each of the provided high-level functions. The compiler then searches
the space of rewrite rules, allowing it to tune the performance of each
function to a specific GPU. Because this search is done offline, the
programmer can freely use any of the provided parallel functions
knowing that whatever GPU the program runs on, an efficient se-
quence of rewrite rules is known to go from the high-level source to
the target GPU.

This technique, like ours, can be seen as applying search-based
techniques to the problem of knowing when parallelism can be ac-
complished. The benefit of their method is that it is restricted to a
finite set of pre-determined parallel functions.

Another rewriting approach uses a proof of the program in separa-
tion logic, to automatically parallelise the program where it is safe,
having the safety guaranteed by the provided proof [Hurlin, 2009].
The proof can be transformed as the program is transformed pro-
viding assurance that the resulting program has the same semantic
behaviour. This technique does save the programmer from having
to manually parallelise the code, at the cost of requiring that the al-
gorithm has a separation proof. In any instance where such a proof
is required for any other reason, this technique can be seen as ‘free’.
Otherwise the cost of proving separation could be limit the viability
of this method.

2.5.7 Implicit Parallelism

While explicit parallelism has many advantages and can show great
performance increases, many desire the ability to express a functional

26

program without having to specify where parallelism can take place.
This idea, that parallelism can be achieved without programmer in-
tervention, is known as implicit parallelism. For non-strict languages
it is not possible to parallelise all possible expressions because doing
so may introduce non-termination that would not have occurred oth-
erwise. Strictness Analysis is usually used to determine which expres-
sions are needed and therefore safe to parallelise. Strictness analysis
will be covered in far more detail in Chapter 4, but we will provide a
high-level overview here to provide some context.

Strictness Analysis for Implicit Parallelism

Laziness can work against our desire to exploit possible parallelism
in functional programs. Because of this, researchers have discovered
that using static analysis at compile time in order to discover strict
portions of a program can yield promising results. This analysis
has been named strictness analysis [Mycroft, 1980; Loogen, 1999; Pey-
ton Jones, 1989]. A trivial example is that of the addition of two
expressions, such as the fibonacci sequence.

nfib n
| n 6 0 = 0

| n ≡ 1 = 1

| otherwise = nfib (n − 1) + nfib (n − 2)

Because the (+) function is strict in both its arguments we know
that both recursive calls to nfib will be required. This fact (that we
know that the arguments to a function will be required by the func-
tion) is what enables us to exploit the parallelism that is inherent in
the program.

Parallelism obtained by strictness analysis has been deemed conser-
vative parallelism [Peyton Jones, 1989]. This is due to the idea that
sparking an expression that will definitely be required by the pro-
gram is not seen as risky. However, keep in mind that while it is
known as conservative parallelism it does not mean that there is any
shortage of parallel tasks, it only refers to the fact that no speculative
parallelism will be undertaken. Throughout this thesis we will some-
times refer to conservative parallelism as safe parallelism. This is to
reinforce that the key is avoiding the introduction of non-termination
where there was none in the original program.

One of the issues with standard strictness analysis when used for
implicit parallelism is that it does not take into account the context in

27

which an expression takes place. Take the standard recursive defini-
tion of append:

append [] ys = ys
append (x : xs) ys = x : append xs ys

In general the first argument is needed, but only to the outermost
constructor. However, when append is used in certain contexts, like
returning its result to a function that requires a finite list:

length (append xs ys)

here append actually requires both of its arguments to be finite. This
notion of context has been dealt with in two main ways in the lit-
erature: Evaluation Transformers and Projection-Based Strictness Anal-
ysis. We will examine Evaluation Transformers in Chapter 5, and
Projection-Based Strictness Analysis in Chapter 4. In short both of
these techniques allow the compiler or runtime system to take advan-
tage of the information that an expression’s context provides regard-
ing how defined a value must be.

Many of the attempts at automatic parallelisation used the tech-
nique pioneered by Hogen et al. [1992], which uses strictness analysis
to identify safe parallelism and evaluation transformers [Burn, 1987] to
good effect. The main setback of this popular approach is that there
is no method for refining the initial placement of parallelism. Strict-
ness analysis is not equipped to determine the benefit of evaluating
an expression in parallel, only the safety. We refer to this problem as
the granularity problem throughout the thesis.

Feedback-Directed Implicit Parallelism

Harris and Singh [2007] proposed using iterative feedback in order to
assist the compiler in determining which expressions are expensive
enough to warrant evaluation in parallel. Their approach forgoes the
use of strictness analysis to place parallelism into a program. Instead
they utilise runtime profiling to measure the lifetime of thunks in the
heap and the relationship between the thunks. They can then study
dependency graph between thunks and determine which thunks are
worthwhile for parallelism.

Because each thunk has a unique allocation site, they are able to
provide an estimate for the ‘total work’ performed by an allocation
site. They define this measure as t/a where t is the amount of time

28

that at least one thunk from that allocation site is being evaluated,
and a is the number of thunks allocated during that time. This pre-
vents an allocation site from being deemed worthwhile because of a
long lifetime but in reality it creates numerous thunks each requiring
a small amount of work, flooding the runtime system with small-
grained tasks [Harris and Singh, 2007, Section 3].

2.6 summary of the chapter

In this chapter we have provided an broad introduction to the field
of parallel functional programming. The literature includes work on
runtime systems, static analyses, and library design. Over time pro-
gramming with par and seq directly has proven to be difficult, the
level of abstraction is too high for reasoning about performance but
too low to be able to generalise one program’s parallel implementa-
tion to another.

Parallel Strategies solve this problem to some degree, allowing the
algorithm to be separated from the parallelism permits programmers
to reuse their intuitions about which Strategies may be worthwhile
for different problem domains. Strategies still suffer from the fact that
lazy programs can be difficult to reason about however, and often do
not provide the speedups a programmer might expect.

The Par monad attacks the problem from the other direction. By
giving programmers a clearer view of when evaluation is occurring,
performance can be more easily predicted. This comes at the slight
cost of requiring the program to be more explicit in some cases12 and
that all structures be evaluated to normal form.

While much of the recent work in parallel functional programming
has been in explicit or semi-implicit techniques there has been a re-
cent resurgence in interest for fully implicit parallelism. The tech-
nique in Harris and Singh [2007] produced promising results but suf-
fered from difficulties scaling to larger programs. Our work seeks
to benefit from the insight presented in loc. cit. that using runtime
profiles can help solve the granularity problem, but instead of using
iterative feedback to find parallelism, we use the feedback to prune
the parallelism that has been introduced by strictness analysis.

12 The library does provide some high-level functions that allow the programmer to
use the Par monad without needing to write their code in the monad itself, but on
complex problems it is often necessary to write the Par monad code directly.

29

Our work can be seen as a combination of the most successful meth-
ods to date: static analysis for the placement of parallelism [Hogen
et al., 1992] and feedback iteration to improve the static placement
[Harris and Singh, 2007].

30

3
B I R D ’ S E Y E V I E W O F O U R T E C H N I Q U E

I thought the “lazy functional languages are great for implicit par-
allelism” thing died out some time ago

– Lippmeier [2005]

This chapter is meant to accomplish two important goals: to provide
a common vocabulary for the rest of the thesis and to familiarise the
reader with the ‘gist’ of our proposed technique. In regards to the
first goal we will introduce the syntax of F-lite and define terms that
will be used throughout the rest of the thesis. By offering an overview
of our technique, the reader will also possess context for each of the
later chapters.

That being said, this chapter can be skipped if the reader is com-
fortable with functional languages and compilers.

Plan of the Chapter

The chapter begins by defining the syntax and semantics of F-lite and
Folle in Section 3.1 which are higher-order and first-order languages
respectively. Section 3.2 presents a high-level view of our compiler
and its organisation.

3.1 f-lite : a lazy purely functional core language

The use of a small functional language as the internal representation
of a compiler is a common technique in functional compilers [Plasmei-
jer and Eekelen, 1993; Peyton Jones and Lester, 1992; Augustsson and
Johnsson, 1989a; Dijkstra et al., 2009]. By using a small core language
as an internal representation, source language features are simply
syntactic sugar that is translated to a simpler but no less expressive
language. This provides compiler writers with a smaller surface area
for analysis and transformation. This has been used to great effect
in the Glasgow Haskell Compiler (GHC) which uses a small core lan-

31

guage similar to ours [Peyton Jones and Marlow, 2002; Peyton Jones
and Santos, 1998].

3.1.1 Why be Lazy?

Functional languages vary widely in their syntax, features, and type
systems, but almost all functional languages are either strict (eager) or
non-strict (and usually lazy) in their evaluation model. It is important
to understand the distinction between these two systems. Because
functional languages can be seen as enriched lambda calculi, we can
study different evaluation orders1 by demonstrating them on a simple
lambda calculus. There are a few evaluation strategies that can be
used with the lambda calculus:

1. Call-by-value

2. Normal-order

a) Call-by-name

b) Call-by-need

Call-by-name and call-by-need are both subsets of normal-order re-
duction [Abramsky, 1990]. The differences between these strategies
can be easily illustrated using the following function definitions:

sqr x = x ∗ x

bot = ⊥

Now assume we want to evaluate the expressions sqr (2 ∗ 3) and
bot (2 ∗ 3). We can manually reduce each of these expressions using
each of the evaluation orders.

1 Many texts describe them as evaluation strategies. We use the term ‘order’ to avoid
confusion with parallel strategies, which are a different concept that play a central
role in this thesis.

32

sqr (2 ∗ 3)

= sqr 6

= let x = 6 in x ∗ x

= 6 ∗ 6

= 36

bot (2 ∗ 3)

= bot 6

= let x = 6 in ⊥

= ⊥

Figure 4: Call-by-value reduction

call-by-value Note that the argument to sqr and bot is evalu-
ated before we enter the function’s body.

sqr (2 ∗ 3)

= let x = (2 ∗ 3) in x ∗ x

= let x = (2 ∗ 3) in (2 ∗ 3) ∗ x

= let x = (2 ∗ 3) in 6 ∗ x

= 6 ∗ (2 ∗ 3)

= 6 ∗ 6

= 36

bot (2 ∗ 3)

= let x = 2 ∗ 3 in ⊥

= ⊥

Figure 5: Call-by-name reduction

call-by-name Here reduction delays the evaluation of a func-
tion’s argument until its use. However, the result of evaluating a
value is not shared with other references to that value. This results in
computing 2 ∗ 3 twice.

33

sqr (2 ∗ 3)

= let x = 2 ∗ 3 in x ∗ x

= let x = 6 in 6 ∗ x

= 6 ∗ 6

= 36

bot (2 ∗ 3)

= let x = 2 ∗ 3 in ⊥

= ⊥

Figure 6: Call-by-need reduction

call-by-need This is designed to avoid the duplication of work
that is often a result of call-by-name evaluation. Notice that in this
evaluation (2 ∗ 3) is bound to x as before but the result of computing
the value of x the first time updates the binding. This is why call-by-
need is often referred to as call-by-name with sharing, or lazy.

An important point is that for languages without arbitrary side-
effects call-by-name and call-by-need are semantically equivalent. Call-
by-need is an optimisation for the implementation of reduction.

sqr (2 ∗ 3)

= let x = 2 ∗ 3 in x ∗ x

= let x = 2 ∗ 3 in 6 ∗ x

= let x = 2 ∗ 3 in 6 ∗ 6

= 36

bot (2 ∗ 3)

= ⊥

Figure 7: Normal order reduction

normal order This method of evaluation is the only method
that obeys the semantic property that λ → ⊥≡ ⊥. This is because
normal order reduction will evaluate under a lambda [Abramsky,
1990].

34

Of the four, only the first three are commonly used as the basis for
programming languages. Most languages are call-by-value, this in-
cludes functional languages such as Scheme, OCaml, SML, and Idris.
Fewer languages are call-by-name, Algol 60 being the most notable
case. Scala, while being call-by-value by default, does allow program-
mers to specify that some functions use call-by-name. Lastly, call-by-
need is used by Haskell, Clean, Miranda, and our own F-lite.

The reader may have noticed that in our examples above the result
of evaluation was always the same when they terminated, regardless
of evaluation order. This is an observation of a more general prop-
erty about rewrite systems known as confluence. The lambda calculus
was proven to be a confluent system by Church and Rosser in 1936

[Church and Rosser, 1936]. When discussing the lambda calculus
specifically, it is referred to as the Church-Rosser property.

Church-Rosser Property
The fact that the pure lambda calculus is confluent means that
if there is more than one possible reduction step, the choice
of reduction does not alter the final result as long as the chosen
reduction steps eventually terminate.

We can illustrate the ramifications of the property with another
simple example. The function const is a function that takes two argu-
ments and returns the first. The value inf is an infinite list of 1s.

const x y = x

inf = 1 : inf

The expression const “NF ′′ inf has multiple reducible expressions
(redexes), but only one normal form (NF): “NF ′′.

const “NF ′′ inf
= const “NF ′′ (1 : inf)
= const “NF ′′ (1 : 1 : inf)
= . . . -- reduce forever

const “NF ′′ inf
= “NF ′′

Figure 8: Eager (left) and Lazy (right) evaluation order for const

The Church-Rosser property gives us a profound guarantee for our
functional programs: given a valid expression, there is only one nor-
mal form for the expression. This is true regardless of the order of

35

reductions carried out (given that the series of reductions actually ter-
minates). So given a program, there can be many possible reduction
orders that all lead to the same result. Additionally, if any reduction
order terminates, then call-by-need evaluation terminates [Bird, 2014].
What does this mean for sequential computation? For lazy languages,
such as Haskell, this means that there can only be non-termination if
there would have been non-termination under any other evaluation
model.

With the Church-Rosser theorem in hand and knowing that call-by-
need programs are more likely to terminate than call-by-value equiva-
lents, does the evaluation order we choose affect our aims with regard
to automatic parallelisation? The main motivator for choosing call-by-
need is that the evaluation order makes purity an essential part of the
language. Because evaluation of an expression can be delayed for any
amount of time, allowing arbitrary side-effects would make program-
ming extremely difficult. By keeping the language pure we gain the
full benefits of the Church-Rosser property.

Systems designed to take advantage of implicit parallelism have
been written for languages that use each of the three main evalu-
ation orders. We have decided on call-by-need semantics because
it emphasises purity and features the sharing of computation built
into the execution model. The focus on purity allows the compiler
to take certain liberties with program transformation that may not
otherwise be valid [Peyton Jones and Santos, 1998]. In the case of
auto-parallelisation, we are able to know that we could only alter the
semantics of a program by introducing non-termination. As we will
see in Chapter 4 there are methods to ensure we avoid this.

an aside Many languages, including functional languages, that
use call-by-value semantics also provide the ability to perform arbi-
trary side-effects and mutation. This greatly hampers the feasibility
of implicit parallelisation because the sequence of side-effects can alter
the semantics of the program. While programmers could write pure
programs that do not rely on shared state, it is not enforced by the
compiler as it is for languages like Haskell. That being said, there are
techniques that can be used to find safe parallelism in strict languages
[Might and Prabhu, 2009].

36

type Prog = [Decl]

data Decl = Func Id [Pat] Exp
| Data Id [Id] [(Id, [TypeExp])]

type Id = String

data Exp = App Exp [Exp]
| Case Exp [Alt]
| Let [Binding] Exp
| Var Id
| Con Id
| Fun Id
| Int Int
| Lam [Id] Exp
| Freeze Exp
| Unfreeze Exp

data Alt = (Pat, Exp)

type Binding = (Id, Exp)

type Pat = Exp -- Applications of Cons to Vars

Figure 9: Abstract Syntax for F-lite

3.1.2 The Abstract Syntax of F-lite

Having motivated our choice of a lazy language we can now present
F-lite [Naylor and Runciman, 2010] completely. We start with Figure
9 where the abstract syntax of F-lite is defined.

The language is an enriched lambda calculus with many of the
usual conveniences: case expressions, recursive lets, and user-defined
types. A key point is the presence of expressions of the form Freeze e
and Unfreeze e. These expression are not found in the concrete syn-
tax but are instead added by the compiler to make the suspension
and forcing of lazy values explicit. This is a common technique
when analysing non-strict programs with projections [Paterson, 1996;
Hinze, 1995]. We will see the utility of these expressions in Chapter 4.
We provide a function to translate standard F-lite expressions into
F-lite expressions with explicit Freeze and Unfreeze in Appendix B.

37

3.2 overview of the compiler

As the majority of our work is in the form of a compiler it is im-
portant to understand its organisation. Most of the phases present
in our compiler can be found in standard compilers for lazy func-
tional languages with the exception being that our compiler ‘iterates’
by running the program and altering the compilation based on that
feedback. The compiler is organised into 8 main phases, as follows:

1. Parsing

2. Defunctionalisation

3. Projection-based Strictness Analysis

4. Generation of strategies

5. Placement of par annotations

6. G-Code Generation

7. Execution

8. Feedback and iteration

Parsing is completely standard and we will therefore omit dis-
cussing that stage of compilation. An interested reader is pointed to-
wards “Implementing Functional Languages: A Tutorial” [Peyton Jones
and Lester, 1992].

The rest of this dissertation focuses on the static analysis phases of
the compiler (defunctionalisation, strictness analysis, and the genera-
tion of strategies) and the feedback and iteration phase. To see how
the pieces all fit together we will demonstrate the important stages of
the compiler with two small programs.

3.2.1 Automatic Parallelisation: 1990s Style

When research into implicit parallelism was at its height in the late
1980s and 1990s much of the focus was on using static analysis to
introduce parallelism to programs. We can see how this was done
with a simple example.

The program listed in Figure 10 is the Tak program benchmark,
often used for testing the performance of recursion in interpreters
and code generated by compilers [Knuth, 1991].

38

tak :: Int -> Int -> Int -> Int

tak x y z = case x <= y of

True -> z

False -> tak (tak (x - 1) y z)

(tak (y - 1) z x)

(tak (z - 1) x y)

main = tak 24 16 8

Figure 10: Source listing for Tak

Luckily, this program is already first-order, so we do not need to
worry about defunctionalisation. We therefore proceed directly to our
strictness analysis (in this compiler we use a projection-based strictness
analysis, which is discussed in Chapter 4). This phase of the compiler
is able to determine which function arguments are definitely needed
by each function. In the case of tak the strictness analysis determines
that all three arguments are needed.

After we perform our projection-based strictness analysis we can
introduce the safe par annotations, transforming the program into a
parallelised version. The result of this transformation on Tak is listed
in Figure 11.

Each needed argument is given a name via a let binding. This
is so that any parallel, or seqed, evaluation can be shared between
threads. When there are multiple strict arguments (as is the case for
tak) we choose to spark the arguments in left-to-right order except
for the last strict argument, which we seq. This is a common tech-
nique that is used to avoid potential collisions [Trinder et al., 1998].
Collisions occur when a thread requires the result of another thread

tak x y z = case x <= y of

True -> z

False -> let x’ = tak ((x - 1)) y z

y’ = tak ((y - 1)) z x

z’ = tak ((z - 1)) x y

in (par x’ -- par-site 0

(par y’ -- par-site 1

(seq z’

(tak x’ y’ z’))))

main = tak 24 16 8

Figure 11: Source listing for Tak after analysis, transformation, and
par placement

39

before that result has been evaluated. By ensuring that one of the
arguments is evaluated in the current thread (by using seq) we give
the parallel threads more time to evaluate their arguments, lessening
the frequency of collisions.

Now that the parallelism has been introduced we can run our pro-
gram on a multi-processor machine and hope to get speedups.

This is the hallmark of the conventional approach to automatic
parallelism: determine a method of identifying potential parallelism,
then transform the program to exploit that parallelism. However, this
approach only addresses one half of the criteria needed for taking ad-
vantage of implicit parallelism: where is parallelism safe?

While static analysis has determined that x’ and y’ can be evalu-
ated in parallel safely, it does not determine whether parallel evalua-
tion of those expressions is worthwhile. This is the crux of the granu-
larity problem. In the case of Tak we can run the program and see that
we do indeed achieve performance increases from the parallelism that
was introduced.2 However, there is no process by which the compiler
may alter its decision of what par annotations to introduce.

In the literature it was common to use further static analysis to
estimate the cost of evaluating an expression. This estimate would
then be used to avoid introducing parallelism that is too fine-grained.
This was commonly done with both heuristic oracles and/or using a
static cost analysis [Hogen et al., 1992] .

3.2.2 Static Analysis is Not Enough

The propensity for researchers to prefer static analysis over dynamic
technique has many benefits, particularly the fact that they incur no
runtime costs and have many decades of work to build upon. How-
ever, in some cases the (over)reliance on static analyses can be a hin-
drance instead of a benefit. We argue that implicit parallelism is an
area that requires compiler writers to abandon the ‘static analysis
only’ methodology.

An intuitive argument for our view is that parallelising programs
is something that even experts have difficulty with. The work of de-
termining what parallelism is worthwhile is often an iterative process
between the programmer and the program. In other words; program-
mers do not ‘write once’, but instead annotate a program, profile the

2 But it is not the fastest that we can achieve!

40

program, and alter the program according to the results of profiling.
Why do we forbid compilers from utilising the same process?

Program analysis does not have to pick sides; compilers can benefit
(if the implementors wish) from both static and dynamic analysis. In
the case of implicit parallelism this means having the compiler per-
form a form of static analysis that provides an initial decision about
parallelism in the program, then having those decisions either con-
firmed or rejected by dynamic, profile-driven analysis. There are sev-
eral ways to achieve this goal. The method we suggest is to utilise
feedback-directed compilation.3

Feedback-Directed Compilation
The use of runtime profiles from previous executions of the pro-
gram in order to inform an aspect of compilation or optimisa-
tion.

This frees the compiler from having to answer all of the difficult
questions statically (and in one shot). Might and Prabhu [Might and
Prabhu, 2009] suggest that the compiler has two questions it must ask
when parallelising a sequential program :

1. Where is parallelisation safe?

2. Where is parallelisation beneficial?

Compiler writers have many tools available when wanting to an-
swer the first: strictness analysis, dependency analysis, control-flow
analysis, etc. [Hogen et al., 1992; Might and Prabhu, 2009]. In fact,
these analyses are very good at answering the first question. The is-
sue that has plagued work in automatic parallelisation is that there is
often too much safe parallelism.4 Determining the answer to the sec-
ond question then becomes essential. Unfortunately determining the
cost (or benefit) of evaluating an expression in parallel is notoriously
difficult to do statically.

The problem is that while the safety of parallelising an expression
is a static property of the program, the benefit is also affected by ex-
trinsic factors such as the architecture the program is executed on.
To be more precise; if there is a minimum cost to create parallelism,
static analysis can determine that some expressions are definitely not

3 Sometimes referred to as feedback-directed optimisation or iterative compilation
4 This is true for pure languages, in languages that allow arbitrary side-effects finding

safe parallelism can be more difficult.

41

worthwhile (by over-approximating the cost of evaluating an expres-
sion), however, static analysis cannot determine that an expression is
definitely worthwhile. This is because the benefit of parallelising an
expression is a function of more than the static semantics of a pro-
gram.

Let us consider a simple thought experiment:
First, consider an ideal parallel machine that has an infinite num-

ber of processing units, zero-cost communication, and no context
switches (each task gets its own processor).5 The only cost to cre-
ating parallelism is the exact cost of the machine instructions used to
initialise the parallel task. If a task requires less time than the initial-
isation cost, it is a net cost to the program and not worthwhile for
parallelism. While unrealistic, this scenario demonstrates that there
are some expressions that will not be worthwhile no matter the final
program substrate.

Now consider the same machine, except with a finite number of
processing units. Because each task is no longer able to retain a pro-
cessor to itself, the machine must schedule tasks which imposes a
context-switch cost on the tasks that are interrupted. Now whether
a task is worthwhile depends not only on its intrinsic cost, but on
the effect it has on the rest of the computation by interrupting other
tasks. It is easy to see that more context-switches occur as the number
of processing units available is reduced.

The difficulty of predicting the benefit of a parallel task becomes
even more difficult as the machine becomes more realistic. Because
of this we feel that it is sensible to ask: “Why have the compiler try at
all?”. Instead of having the compiler approximate this complex pro-
gram property, we can run the program itself and have the compiler
‘see’ the effect its parallelisation has on the final program.

One question remains: in what way do we combine the static anal-
ysis with the feedback-directed compilation? There are several appar-
ent approaches:

1. Have the compiler introduce parallelism sparsely, and use the
iteration to introduce more parallelism

2. Have the compiler introduce what seems to be too much paral-
lelism and have the iteration remove some of the parallelism

5 We did say ideal machine.

42

3. Have the compiler provide an initial ‘reasonable’ parallelisation
and have the iteration introduce/remove parallelism as neces-
sary

In choosing our approach we chose to play to the strengths of the
language we are conducting our experiments with. In pure functional
languages there is an abundance of safe parallelism. Historically, par-
allelism in pure lazy languages often suffers more from the granular-
ity problem than from a lack of available parallelism.For this reason
we have opted to use the second approach: use static analysis to in-
troduce as much parallelism as possible and use runtime feedback to
disable some of the introduced parallelism.

We note that for a language that allows arbitrary side-effects it may
be more beneficial to use the first approach as the runtime feedback
would aid in determining which tasks were actually independent.

Later in Chapter 10 we will explore a variant of the third approach.

3.2.3 Automatic Parallelism in the 21st Century

In order to address this issue we take advantage of two key properties
of our par annotations:

1. Each introduced par sparks off a unique subexpression in the
program’s source

2. The semantics of par (as shown in Figure 12 on page 51) allow
us to return its second argument, ignoring the first, without
changing the semantics of the program as a whole

These two properties allow us to represent the pars placed by static
analysis and transformation as a bitstring (one bit per call-site). Each
bit represents a specific par in the program’s AST. The second prop-
erty allows us to have 2 separate operational intepretations of par that
maintain its semantic properties. When a par’s bit is ‘on’ the par

behaves as normal, sparking off its first argument to be evaluated in
parallel and return its second argument. When the bit is ‘off’ the par

returns its second argument, ignoring the first.
This allows us to change the operational behaviour of the program

without altering any of the program’s semantics. In other words, we
are able to try evaluating subexpressions in parallel, without the risk
of introducing behavior that was not present in the original program.

43

iterative improvement Just because an expression is able to be
evaluated in parallel does not mean that doing so is beneficial. This is
one of the critical problems in implicit parallelism [Hogen et al., 1992;
Hammond and Michelson, 2000; Jones et al., 2009]. To combat this we
run the program as presented in Figure 11 and collect statistics about
the amount of productive work each par is responsible for. The pars
that do not introduce a worthwhile amount of parallelism are dis-
abled, freeing the program from incurring the overhead of managing
threads for tasks with insufficient granularity.6

Luckily, the Tak program has so few pars that an exhaustive ex-
ploration of the possible settings is easy. Table 1 shows the resulting
speedup (as compared to the program with all parallelism turned off)
from the different possible par settings. The bitstring “10” represents
the version of Tak where the par labelled 0 in Figure 11 is on and the
par labelled 1 is off.

00 01 10 11

speedup 1 1.56 0.43 0.97

Table 1: Performance of Tak with different par settings

As we can see, more pars is not necessarily better. In fact, for our
interpreter the setting 10 results in quite a lot of thread collisions,
meaning that a thread pays the overhead for its paralellism and is
almost immediately blocked. Paying the cost of creating and manag-
ing the parallelism, but not being able to perform any actual work is
why the program performs worse than the version of Tak with all the
parallelism switched off.

So why introduce this parallelism in the first place? Because the
granularity and possible interference of parallel threads is difficult to
know statically at compile time. Not only is it difficult to know these
properties statically, but these properties differ from architecture to
architecture [Steuwer et al., 2015]. If we err on the side of generosity
with our par annotations we can then use runtime profiling to gather
information about the granularity and interference of threads.

6 This can be seen as a more extreme variation of Clack and Peyton Jones’ “Evaluate
and die!” model of parallelism [Clack and Peyton Jones, 1986]: Evaluate a lot or die!

44

3.3 summary

This chapter provided a high-level overview of our technique for ex-
ploiting the parallelism that is inherent in functional programs. We
motivated our choice of a lazy language (using call-by-need) by con-
sidering its emphasis on purity and the fact that the sharing of values
is built in to the evaluation model.

We introduced the structure of our compiler and walked through
the steps of our technique using the Tak program as a small example.
This allows for a clearer notion of where the remaining chapters fit
into our technique and provides a common vocabulary for the rest of
the thesis.

Now that we have presented the high-level view of our work we
will now explore each of the stages in depth. Chapter 4 introduces
strictness analysis and discusses the history of its development and
why we have chosen projection-based strictness analysis for our com-
piler. Chapter 5 presents how to use the results from projection-based
strictness analysis to automatically derive parallel strategies that are
then used to introduce parallelism into the source program. Chap-
ters 7 and 8 represent the iterative phase of our compiler, discussing
two methods of searching the space of par settings.

45

Part II

The Discovery and

Placement of Safe

Parallelism

46

4
F I N D I N G S A F E PA R A L L E L I S M

Parallelism is introduced in our system by the programmer anno-
tating the programs. We have not yet addressed the problem of
how to automatically place such annotations.

– Augustsson and Johnsson [1989b]

Non-strictness makes it difficult to reason about when expressions
are evaluated. This is due to the fact that call-by-need languages
only evaluate expressions when their results are needed, and when
a value is needed can depend on runtime data. One of the benefits
of this approach is that it forces the programmer to avoid the use of
arbitrary side-effects. The resulting purity means that functions in
pure functional languages are referentially transparent, or the result of
a function depends only on the values of its arguments (i.e. there
is no global state that could affect the result of the function or be
manipulated by the function).

Unfortunately this elegant evaluation model is actually at odds
with the goals of performance through parallelism: if we have par-
allel processing resources, we wish to use them to do as much work
as possible to shorten execution time [Tremblay and Gao, 1995].

Call-by-need semantics forces our compiler to take care in deciding
which sub-expressions can safely be executed in parallel. Having
a simple parallelisation heuristic such as ‘compute all arguments to
functions in parallel’ can alter the semantics of a non-strict language,
introducing non-termination or runtime errors that would not have
occurred during a sequential execution.

The process of determining which arguments are required for a
function is known as strictness analysis [Mycroft, 1980]. Since the early
1980’s such analysis has been widely used for reducing the overheads
of lazy evaluation [Sergey et al., 2014]. As strictness analysis is a form
of termination analysis it is undecidable in general and therefore any
results are approximate. Usually the abstract semantics are chosen

47

so that the analysis can determine when an expression is definitely
needed.1

It is possible to throw caution to the wind and speculate on which
expressions may be needed. This itself is a rich area of research and
requires the compiler to identify plausible candidates but ensure that
errors and non-termination do not affect the program as a whole .
For our work we chose to utilise only safe implicit parallelism.

Safe Implicit Parallelism
The parallelism inherent in a program from tasks/expressions
that would have been evaluated during the program’s termi-
nating sequential execution. Any parallelism determined to be
safe would not result in non-termination that was not already
present in the program.

Safe implicit parallelism is in line with our overall goal of provid-
ing a system that guarantees that the parallelised program has the
same semantics as the original. Therefore, before we can run our
automatically parallelised programs, we must develop methods and
techniques for the compiler to find and express the parallelism that is
implicit in our programs. Strictness analysis is suitable in aiding this
task but care must be taken in choosing a specific analysis to use.

This chapter is concerned with studying the various analyses and
the trade-offs that are inherent in the differing approaches. A survey
of the concepts and development of strictness analysis will inform
our choice of analysis and allow us to understand the drawbacks and
limits of our chosen method.

Plan of the Chapter

We provide a high-level overview of the issues and motivations in
Section 4.2; this should provide enough context to those who want
to move quickly to the next chapter and not concern themselves with
the details of strictness analysis. The ideas are then expanded in
the three sections that follow. Section 4.3 explores basic strictness
analysis using the original two-point domain. We will see why a
two-point domain results in an analysis that is too limited for our
use in deriving useful parallel strategies. Using a four-point domain,
which we discuss in Section 4.4, fixes much of this issue and provides
much better information for parallel programs (and has been used

1 ‘Needed’ in this context means ‘needed for the computation to terminate’.

48

toward that end) but does not allow for analysis on arbitrary data-
types. Lastly, we review the work on projection-based analysis, which
solves both issues, in Section 4.5.

4.1 original motivation vs . our motivation

Purity alone is of huge benefit when dealing with parallelism. Be-
cause functions do not rely on anything but their arguments, the
only necessary communication between threads is the result of the
thread’s computation, which is shared via the program’s graph us-
ing the same mechanism used to implement laziness [Peyton Jones,
1989].

Laziness, while forcing the programmer to be pure (a boon to par-
allelism), is an inherently sequential evaluation strategy. Lazy evalu-
ation only evaluates expressions when they are needed. This is what
allows the use of infinite data structures; only what is needed will be
computed.

This tension between the call-by-need convention of laziness with
parallelism’s desire to evaluate expressions before they are needed is
well known [Tremblay and Gao, 1995]. The most successful method
of combating this tension is through the use of strictness analysis [My-
croft, 1980; Wadler and Hughes, 1987; Hinze, 1995].

4.2 overview

Because we are working in a lazy language it is not always safe to
evaluate the arguments to a function before we enter the body of a
function. This is easy to see with a simple example; appending two
lists:2

append :: [α] → [α] → [α]

append [] ys = ys
append (x : xs) ys = x : append xs ys

append takes two list arguments. A central question that strictness
analysis asks is: How defined must the arguments be to append in
order for append to terminate?

The first hint is that append pattern matches on its first argument.
Because the function must be able to distinguish between a (:) and

2 Here we have used the naı̈ve recursive version, but any correct version of append
will have the same strictness properties.

49

a [] we know that the first argument must be defined at least to the
outermost constructor. Therefore, a use of append that is passed ⊥
as its first argument will result in non-termination. What about the
second argument, ys. Determining how defined ys must be turns out
to be impossible without taking into account the context that a call to
append occurs in. If the first argument is [] then ys must be defined to
WHNF. However, the (:) case guards the recursive call to append and,
by extension, the use of ys.

The literature on Strictness Analysis is the story of determining
these properties in the general case. We start in Section 4.2.1 with ex-
ploring the simplest strictness analysis, Ideal Analysis on flat domains.
We then show how the work was extended to non-flat domains in Sec-
tion 4.4. Lastly, we show how the notion of contexts mentioned above
are formalised by the use of projections from Domain Theory in sec-
tion 4.5.

4.2.1 Ideal Strictness Analysis

If a function uses the value of an argument within its body it is safe
to evaluate that argument before, or in parallel with, the execution
of the body of the function. In order to determine which arguments
can be evaluated in this way modern compilers use strictness analysis
[Mycroft, 1980]. More formally, a function f of n arguments

f x1 . . . xi . . . xn = . . .

is strict in its ith argument if and only if

f x1 . . . ⊥ . . . xn = ⊥

What this states is that f is only strict in its ith argument if f be-
comes non-terminating3 by passing a non-terminating value as its ith
argument.

Knowing the strictness information of a function is the first step
in automatic parallelisation. This is because if f is strict in its ith
argument we do not risk introducing non-termination (which would
not otherwise be present) by evaluating the ith argument in parallel
and waiting for the result. In other words, evaluating xi in parallel

3 In this thesis we use the convention that ⊥ represents erroneous or non-terminating
expressions.

50

seq :: a→ b→ b par :: a→ b→ b

seq x y = y par x y = y

Figure 12: Semantics (but not the pragmatics) of seq and par.

would only introduce non-termination to the program if evaluating f
with xi would have resulted in f’s non-termination anyway.

F-Lite has two primitives for taking advantage of strictness infor-
mation: par and seq, as shown in Figure 12.

Both functions return the value of their second argument. The dif-
ference is in their side-effects. seq returns its second argument only
after the evaluation of its first argument. par forks the evaluation of
its first argument in a new parallel thread and then returns its sec-
ond argument; this is known as sparking a parallel task [Clack and
Peyton Jones, 1986].

Strictness analysis was a very active research area in the 1980’s
and the development of analyses that provide the type of strictness
information outlined above is a well understood problem [Mycroft,
1980; Clack and Peyton Jones, 1985; Burn et al., 1986]. However, as
suggested above, strictness analysis does not provide satisfactory in-
formation about complex data-structures [Wadler, 1987]. This can be
remedied by the use of projections to represent demand.

4.2.2 Abstract Interpretation

Mycroft introduced the use of abstract interpretation for performing
strictness analysis on call-by-need programs over thirty years ago
[Mycroft, 1980]. Strictness analysis as originally described by Mycroft
was only capable of dealing with a two-point domain (values that are
definitely needed, and values that may or may not be needed). This
works well for types that can be represented by a flat domain (Integer,
Char, Bool, etc.)4 but falls short on more complex data structures. For
example, even if we find that a function is strict in a list argument, we
can only evaluate up to the first cons safely. For many functions on
lists, evaluating the entire list, or the spine of the list, is safe; canonical
examples are sum and length.

4 Any type that can be represented as an enumerated type.

51

In order to accommodate this type of reasoning, Wadler developed
a four-point domain for the abstract interpretation of list-processing
programs [Wadler, 1987]. However, when extended in the natural
way for general recursive data structures, the size of the domains
made finding fix-points prohibitively costly.

4.2.3 Projections and Contexts

So far our discussion of strictness has only involved two levels of
‘definedness’: a defined value, or ⊥. This is the whole story when
dealing with flat data-structures such as Integers, Booleans or Enu-
merations. However, in lazy languages nested data-structures have
degrees of definedness.

Take the following example function and value definitions in F-Lite

length [] = 0 sum [] = 0

length (x:xs) = 1 + length xs sum (x:xs) = x + sum xs

definedList = [1,2,3,4] infiniteList = [1,2,3...

partialList = [1,2,⊥,4] loop = loop

Both length and sum are functions on lists, but they use lists differ-
ently. length does not use the elements of its argument list. There-
fore length would accept definedList and partialList (which has
a non-terminating element) as arguments and still terminate. On the
other hand sum needs the elements of the list, otherwise it would not
be able to compute the sum. For this reason, sum only terminates if
it is passed a fully defined list and would result in non-termination
if passed partialList. Neither function would terminate if passed
infiniteList, since even length requires the list to have a finite
length (some functions do not require a finite list, such as head, the
function that returns the first element in a list). With these exam-
ples we say that length demands a finite list, whereas sum demands a
fully-defined list.

This additional information about a data-structure is extremely use-
ful when trying to parallelise programs. If we can determine how
much of a structure is needed we can then evaluate the structure to
that depth in parallel.

52

The work that introduced this representation of demands was by
Wadler and Hughes [Wadler and Hughes, 1987] using the idea of
projections from domain theory. The technique we use in our com-
piler is a projection-based strictness analysis based on the work in
Hinze’s dissertation [Hinze, 1995]. Hinze’s dissertation is also a good
resource for learning the theory of projection-based strictness analy-
sis.

Strategies

With the more sophisticated information provided by projection-based
analysis, we require more than simply par and seq to force the eval-
uation of values. To this end we use the popular technique of strate-
gies for parallel evaluation [Trinder et al., 1998; Marlow et al., 2010].
Strategies are designed to evaluate structures up to a certain depth
in parallel with the use of those structures. Normally, strategies are
written by the programmer for use in hand-parallelised code. In or-
der to facilitate auto-parallelisation we have developed a method to
derive an appropriate strategy from the information provided to us
by projection-based strictness analysis. The rules for the derivation
are presented as a denotational semantics and will be discussed in
Chapter 5.

4.3 two-point forward analysis

As mentioned in the Introduction, the majority of functional lan-
guages use either call-by-need or call-by-value semantics. While call-
by-need has many attractive properties the delaying of computation
incurs an overhead cost on all computations. Call-by-value, by con-
trast, has an execution model that is more easily mapped to conven-
tional hardware, allowing for simpler implementations that achieve
good performance. Mycroft used this tension to motivate his devel-
opment of strictness analysis [Mycroft, 1980]:

The above arguments suggest that call-by-value is more
efficient but call-by-need preferable on aesthetic/defined-
ness considerations. So techniques are herein developed
which allow the system to present a call-by-need interface
to the user but which performs a pre-pass on his program

53

annotating those arguments which can validly be passed
using call-by-value.

By determining which arguments can be safely passed using call-
by-value we diminish the overhead of call-by-need, paying the over-
head of suspending computation only when necessary to ensure that
call-by-need semantics are maintained.

While this was the original motivation for strictness analysis it also
serves in identifying potential parallelism in a program. When an
argument is suitable to be passed as call-by-value it is also suitable
to be evaluated in parallel. In this case the value is evaluated in par-
allel to the original thread. Synchronisation is accomplished via the
same mechanism as laziness,5 with the exception that a thread can be
blocked while waiting for another thread to complete its evaluation.

4.3.1 Safety First

Strictness analysis is chiefly concerned with safety. In order to retain
the origin call-by-need semantics the runtime can only alter the eval-
uation order when doing so guarantees the same termination proper-
ties of the program.

We will refer to this notion of safety as the strictness properties of
an argument. Take a function f of n arguments

f x1 . . . xi . . . xn = 〈function body〉

The ith argument of f is said to be strict if and only if

f x1 . . .⊥i . . . xn = ⊥ (1)

For any possible values of x1 − xi−1, xi+1 − xn.
Equation 4.3.1 can be read as “f is strict in xi when f fails to ter-

minate if xi fails to terminate”. The reason this allows us to evaluate
the ith argument before it is needed is because doing so would only

5 Remember that with the spark model of parallelism the synchronisation occurs via
updates to the heap. When a thread begins the evaluation of an expression it marks
the heap node as ‘locked’, stopping any other thread from repeating the computa-
tion. When the thread completes evaluation of the expression to WHNF, it updates
the locked heap node to point to the result. Therefore the way threads share com-
putation is identical to the way a sequential lazy evaluator shares the evaluation of
expressions [Clack and Peyton Jones, 1986].

54

0 1 2−1−2.−∞ ∞
⊥

Figure 13: Flat Domain

result in introducing non-termination if the program would have re-
sulted in non-termination otherwise.

4.3.2 Abstract Domains

Now that we have established what it means to be strict we can ex-
pand on how we analyse programs for this property. As with any
abstract interpretation, this involves the choice of an abstract domain.

In non-strict languages types like Integers and Booleans form a flat
domain; either we have a value of that type, or we have ⊥. This is
depicted in Figure 13. We can form an intuition of these orderings by
thinking about how much we know about a certain value. While the
integer value 5 maybe greater than the integer value 4, we know the
same amount about each of them: their values. However, if we have
a procedure that is meant to compute an integer and it loops forever,
we cannot know that integer’s value. Therefore we know less about
a non-terminating value.

This fits nicely with call-by-need semantics: an argument to a func-
tion of type Int is really a computation that can either result in a
value, or result in non-termination. In terms of strictness analysis,
this allows us to abstract our real domain of Integers to the simple
two-point domain shown in Figure 14.

This is the domain we use for basic strictness analysis. The bottom
of the lattice, ⊥, as implied above, represents definitely non-terminating
expressions. The top of the lattice, >, is used to represent potentially

>

⊥

Figure 14: Two-point Domain

55

> u> = >
> u⊥ = ⊥
⊥ u> = ⊥
⊥ u⊥ = ⊥

> t> = >
> t⊥ = >
⊥ t> = >
⊥ t⊥ = ⊥

Figure 15: The meet (u) and join (t) for our lattice

terminating6 expressions. This approximation can seem counterintu-
itive; why are we allowing the analysis to say some results are po-
tentially terminating when they could be non-terminating? The rea-
soning is that non-terminating values do not imply a non-terminating
program under non-strict semantics! If we approximated in the oppo-
site direction (as analyses for other purposes sometimes do) we may
accidentally compute a value that was never needed, defeating the
purpose of call-by-need evaluation.

Abstracting Functions

Now that we know what it means to be strict and why we represent
flat domains as a two-point domain the next step is to abstract the
functions in our program.

The idea is simple: for every function in our program of type A we
must produce a function of type A# that works on the abstracted val-
ues.7 For example, if A is the type Int → Int → Int, A# would have
the abstracted type Int# → Int# → Int#. This abstracted program is
then interpreted using an abstract semantics that provides us with
the strictness information for each function in our program.

While this separation of abstracting the program and then perform-
ing an abstract interpretation is useful from the theoretical point of
view, many compilers skip the intermediate representation of an ab-
stracted program and perform the abstract interpretation with the
original AST [Hinze, 1995; Kubiak et al., 1992; Sergey et al., 2014].

We begin with the set of primitive arithmetic functions. In the
case of F-Lite, each numeric primitive is strict in both arguments,
providing us with the following for each of (+), (−), (∗), (/):

6 Remember that program analysis must approximate in the general case.
7 Some texts represent an abstracted type by a number N where N is the number of

points in the abstract domain. We prefer to retain the context of where this abstract
domain came from.

56

A :: Exp → Env# → Exp#

A [[Var v]] φ = φ v
A [[Int i]] φ = >
A [[Con c]] φ = >
A [[Fun f]] φ = φ f
A [[App (Fun f) [a1, . . . an]]] φ = A [[f]] φ (A [[a1]] φ) . . . (A [[an]] φ)
A [[Let b1 = e1 . . . bn = en in e]] φ = A [[e]] φ[bi 7→A [[ei]]]
A [[Case e alts]] φ = A [[e]] φ u C [[alts]] φ

C [[c1 vars1 → en, . . ., cn varsn → en)]]φ = e#
1
t · · · te#

n
where

e#
1
= A [[e1]]φ[vars1 7→ >]

...
e#

n = A [[en]]φ[varsi 7→ >]

Figure 16: An Abstract Semantics for Strictness Analysis on a Two-
Point Domain

(�) :: Int# → Int# → Int#

>�> = >
>�⊥ = ⊥
⊥�> = ⊥
⊥�⊥ = ⊥

We must also be able to combine results from different paths in a
program. This requires both conjunction and disjunction. We can use
the meet (u) and join (t) from our lattice which are fully described in
Figure 15.

We can now define an abstract interpretation, A, that takes expres-
sions in our language and gives us their abstracted values. We re-
quire an environment that maps variables and functions to abstracted
values, we use, φ :: Env# to represent this environment. We write
φ[x 7→ v] to represent extending the environment with identifier x
being mapped to the value v. Lastly, looking up a value in the envi-
ronment is just applying the environment to the identifier.

4.3.3 Some Examples

We can now use the abstract semantics from Figure 16 on some real
functions.

57

The Constant Function:

The function const is defined as

const x y = x

For non-recursive functions, like const, we can determine the strict-
ness properties fully with just n iterations of A where n is the number
of arguments to the function. We run the abstract interpretation us-
ing ⊥ as the value for the argument we are currently interested in
and > for all the rest.

First we analyse the body (x) in terms of x:

A [[x]] [x 7→ ⊥, y 7→ >] ⇒ ⊥

then in terms of y:

A [[x]] [x 7→ >, y 7→ ⊥] ⇒ >

Remembering what it means to be strict from Equation 4.3.1, this
analysis tells us that const is strict in x but not in y. This is exactly
what we would expect.

2

Conditional

In non-strict languages we can define our own control-flow abstrac-
tions, allowing what is usually a primitive, the if statement, to be
defined naturally in the language as

if p t e = case p of
True → t
False → e

Analysing if should determine that if is strict in p

A [[Case p [True → t, False → e]]] φ

⇒ A [[p]] φ u (A [[t]] φ tA [[e]] φ)

⇒ ⊥u (>t>)
⇒ ⊥

where
φ = [p 7→ ⊥, t 7→ >, e 7→ >]

This shows how the use of meet and join are used to combine the
results from the different branches of the function. Because the dis-
criminant of a Case expression is always evaluated to WHNF, a non-
terminating discriminant results in a non-terminating function.

58

Notice that if we analysed the second two arguments to if then
we would have seen that they are not strict for if because only one
would be ⊥ at a given time and meet (t) only results in bottom if both
arguments are bottom.

2

Calling Abstract Functions

Calling functions in the abstract interpretation is the same as a func-
tion call in the standard interpretation except that the target of the
call is the abstracted function. Dependency analysis is used to ensure
that callees are analysed before their callers.8 The following exam-
ple illustrates calling functions and the fact that the abstraction of
Case is capable of determining when an argument is needed in all the
branches.

addOrConst b x y = case b of
True → x + y
False → x

The analysis for the second argument proceeds as follows

A [[Case b [True → x + y, False → x]]] φ

⇒ A [[b]] φ u (A [[x + y]] φ tA [[x]] φ)

⇒ >u (A [[x + y]] φ tA [[x]] φ)

⇒ >u ((A [[+]] φ (A [[x]] φ) (A [[y]] φ)) t >)
⇒ >u ((+# ⊥>) t >)
⇒ >u (⊥t>)
⇒ ⊥

where
φ = [b 7→ >, x 7→ ⊥, y 7→ >]

The other language constructs are interpreted similarly. Do note
that we do not attempt to analyse functions with free variables. In-
stead we take advantage of lambda-lifting in order to remove nested
functions to the top level. We are not the first to use lambda lifting in
order to avoid this problem [Clack and Peyton Jones, 1985]. Luckily,
lambda lifting is done regardless for compilation to the G-Machine.

2

Recursive Functions

Our last concern is with recursive functions. We use the fact that
recursive abstract functions are just recursive functions on a different

8 This also identifies mutually recursive groups, which we explain next.

59

domain. This allows us to define a recursive function as the least
upper bound of successive approximations of the function, i.e. an
ascending Kleene chain (AKC).

We calculate this by starting with the ‘bottom’ approximation where
all sets of inputs are mapped to ⊥. For a function f we call this f#0.
We then calculate f#n by replacing each call to f with f#(n−1). This
series of successive approximations forms the AKC.

So for a function of the form

f x1 . . . xm = 〈body of f which includes a call to f 〉

We generate the following AKC

f #0 x1 . . . xm = ⊥
f #1 x1 . . . xm = 〈body of f with call to f #0〉
f #2 x1 . . . xm = 〈body of f with call to f #1〉
f #3 x1 . . . xm = 〈body of f with call to f #2〉

...
f #n x1 . . . xm = 〈body of f with call to f #(n−1)〉

We can stop the calculation of this AKC when f#n ≡ f#(n−1) for
all combinations of x1 to xm. This means that for each iteration of the
AKC we must interpret f 2m times!

Fortunately, there are clever ways of avoiding much of this expense
for typical cases. Clack and Peyton Jones developed an algorithm for
the efficient calculation of an AKC [Clack and Peyton Jones, 1985].

2

Discussion of Two-Point Strictness Analysis

We have now seen how to use semantic function A from Figure 16 to
analyse functions in our programs. Now we can see how the results
help us in our ultimate aim of implicit parallelism. For this discussion
we will forget that parallelism is not always beneficial and focus on
how we would utilise all possible parallelism.

Imagine we have a function f with a call to g in its body.

f . . . = . . . g e1 e2 e3 . . .

Our analysis may determine that g is strict in its first two argu-
ments, providing us with an opportunity for parallelism. This would
allow us to safely rewrite f as the following

60

f . . . = . . . let
x = e1

y = e2

in
x ‘par‘ y ‘par‘ g x y e3 . . .

The expressions e1 and e2 are bound to the names x and y in a let
expression so that the results of parallel evaluation are shared with
the body of g.

As mentioned above, the two-point domain informs us about strict-
ness up to WHNF. So if e1 or e2 are values from a flat domain, this
transformation will provide all the benefits possible to g.9 But what
if these arguments are of a non-flat type, like pairs or lists?

Because we aim for safe parallelism, we cannot evaluate e1 or e2
any further than WHNF, already eliminating a vast quantity of poten-
tial parallelism. Take the function sum for example:

f . . . = . . . let
xs = e1

in
xs ‘par‘ sum xs . . .

When a programmer wants to express this idiom in their code they
often use parallel strategies as illustrated in Section 2.5. This allows the
programmer to write an expression similar to xs ‘using‘parList. This
forces the evaluation of the list beyond WHNF. Because our two-point
domain does not guarantee the safety of evaluating beyond WHNF
we are not able to use a strategy like parList. This means that even
though we ‘know’ that sum requires the list fully, the analysis has
no way to represent this, and can only determine that the outermost
constructor is needed!

Because of this shortcoming, strictness analysis in this form is in-
appropriate for discovering the parallelism in a program that uses
arbitrary algebraic data structures (e.g. lists or trees). In the next sec-
tion we will see how this deficiency is overcome by choosing suitable
domains for non-flat structures.

4.4 four-point forward analysis

As noted in the last section, two-point domains are quite limited
when dealing with lazy structures. A more formal explanation for

9 Again, ignoring the fact that it may not actually be a positive benefit.

61

(>,>)

(>,⊥) (⊥,>)

(⊥,⊥)

(a) Unlifted Pairs

(>,>)

(>,⊥) (⊥,>)

(⊥,⊥)

⊥
(b) Lifted Pairs

Figure 17: Domain for pairs of flat-domain values

this limitation is that the two-point domain really represents reduc-
tion to WHNF or ⊥, and nothing else. In the case of flat domains this
is sufficient because WHNF is all there is. For nested data types the
reality is much different.

For functions that work on lists, like sum or append, strictness up
to WHNF is not much benefit. Strictness analysis as described in
the previous section would be able to tell us that sum requires its
argument to be defined, allowing us to evaluate it before entering the
function (or in parallel). But it is only safe up to WHNF. Once the first
Cons is reached we must stop evaluation of the list or risk introducing
non-termination. Through the lens of implicit parallelism it seems
that we are unlikely to benefit from introducing parallel evaluation
when we are limited to WHNF.10 This is clearly a problem.

The solution seems clear: we must extend the abstract domains
for non-flat data types so that we can have more detailed strictness
information. For some data types, extending the technique is straight-
forward. In F-Lite, pairs can be defined as follows.

data Pair α β = MkPair α β

Many languages, such as Haskell, Clean, and the ML family pro-
vide the following syntactic sugar for pairs (and other N-tuples):
(α,β).

A first try at representing pairs of values from the two-point do-
main could give us the lattice in Figure 17a.

The meaning of this lattice is fairly intuitive. When we possess a
pair of flat-domain values there are four possibilities, we can have

10 Indeed most uses of the basic strictness information were for improving the code
generation to avoid building unnecessary suspensions.

62

1. The pair structure itself (MkPair), but accessing either value re-
sults in non-termination

2. The pair structure itself, but accessing the fst element results in
non-termination

3. The pair structure itself, but accessing the snd element results
in non-termination

4. The pair structure itself and both values are fully defined

Notice that possibilites 2 and 3 are similar in that there are one
defined and one undefined item in each. Suggesting that one of 2 or
3 is more defined than the other would make little sense. For this
reason we say that they are incomparable, i.e. they are neither more
nor less defined than each other.

However, the lattice in Figure 17a is only valid for unlifted pairs,
where the constructor value, (,), is always defined. The reality for
non-strict languages is that any value may be undefined, including
the constructors for product types.

This means that we must lift the domain, adding a further bottom
value that represents a failure to construct the pair’s outermost con-
structor (MkPair in the F-Lite case). The result, shown in Figure 17b,
is typical of domains for strictness analysis on finite types. You can
construct an appropriate domain assuming that the structure is itself
defined, then lift the resulting lattice with an additional ⊥ that repre-
sents a failure to construct the structure.

Because this domain is still finite we are able to incorporate it into
the framework developed by Mycroft without much issue, simply
defining the appropriate meet and join on the lattice and the strictness
properties for any primitives that work with pairs. The main issue
is that extending the technique to non-flat domains in the obvious
way introduces infinite domains for recursive types, losing a lot of
the power of abstract interpretation.

The first practical solution was proposed by Wadler involving a
four-point domain for lists [Wadler, 1987]. Instead of representing the
recursive structure of lists directly, which creates an infinite domain,
Wadler chose a domain that represents four degrees of definedness
for lists.

63

>∈

⊥∈

∞
⊥

Figure 18: Wadler’s Four-point Domain

The result, as shown in Figure 18, can be described, from least to
most defined as follows:

1. ⊥ represents all undefined lists

2. ∞ represents all undefined lists, lists with undefined tails and
all infinite lists

3. ⊥∈ represents all of the above in addition to all finite lists with
at least one undefined element

4. >∈ represents fully defined lists along with all of the above

Because we are now concerning ourselves with values from differ-
ent domains in our analysis we must now know the types of expres-
sions in our program. This ensures that we do not accidentally try to
meet or join values from different domains.

To incorporate the four-point domain into the abstract interpreta-
tion from the previous section we need a few new primitives. The
Cons constructor is given the abstract definition shown in Figure 19.
Nil, being a fully defined list, is always abstracted as >∈. There are
a few points worth mentioning about the definition of cons#. First,
none of the equations result in ⊥. This makes sense with our under-
standing of lazy evaluation, if we have the outermost constructor we

cons# >>∈ = >∈
cons# >⊥∈ = ⊥∈
cons# >∞ = ∞
cons# >⊥ = ∞

cons# ⊥>∈ = ⊥∈
cons# ⊥⊥∈ = ⊥∈
cons# ⊥∞ = ∞
cons# ⊥⊥ = ∞

Figure 19: Definition of cons# for a Four-Point Domain

64

A [[Con c]] φ
| c == “Nil ′′ = >∈
| otherwise = >

A [[App (Con “Cons ′′) [x, xs]]] φ = cons# (A [[x]] φ) (A [[xs]] φ)

Figure 20: Modification to A for List Constructors

have a value in WHNF and therefore it is definitely not ⊥. Addition-
ally, notice that consing a defined value onto ⊥∈ also results in ⊥∈,
this keeps cons# monotonic in addition to aligning with our intuitions
(consing a defined element to the beginning of a list with possibly
undefined elements does not suddenly make the list fully defined).

We must therefore alter the A rules for nullary constructors and
add a pattern for when Cons is used. The modified Con c rule and the
new rule for Cons are shown in Figure 20.

In addition to Cons and Nil, we need to define new interpretations
for Case expressions. Pattern matching on a value from the four-point
domain will require a different interpretation than the previous sec-
tion. The new domain introduces two problems that must be dealt
with:

1. Abstracting the alternatives of a Case expression naively can ap-
proximate too much, making the results less effective

2. Choosing appropriate approximations for the bindings intro-
duced with the Cons alternative

We will show the solutions to these obstacles one at a time.

problem 1 : The first point has to do with pattern matching and
preventing the Nil alternative from weakening our approximations.
For now we will ignore the question of how to approximate the bind-
ings introduced with the Cons alternative.

Take the following template for pattern matching on lists:

case 〈a list〉 of
Nil → 〈Nil branch〉
Cons x xs→ 〈Cons branch with possible occurrences of x and xs〉

If we name the Nil branch a# and treat the Cons branch as a function
f # of x and xs we have the following form

65

case 〈a list〉 of
Nil → a#

Cons x xs→ f # x xs

If we were to naively use the Case rule from the previous section
we would have11

A [[Case xs [Nil → e1, Cons y ys → e2]]] φ = xs# u (a# t f # > >∈)

where
xs# = A [[xs]] φ

a# = A [[e1]] φ

f # = [ys][y](A [[e2]] φ)

The issue is that the meeting of a# with f # y ys will often prevent the
analysis from providing useful information. Take the function sum
for example:

sum xs = case xs of
Nil → 0

Cons y ys→ y + sum ys

In this case, a# will always be >, when we abstract the function
to get xs# u (> t f # y ys) the result would only ever be ⊥ if xs≡ ⊥.
Therefore it is only safe for us to evaluate the list up to WHNF, when
sum clearly needs a fully-defined list. Moreover, because we may lack
information about the definedness of xs we must be safe and approx-
imate y and ys to the top of their lattices (> and >∈, respectively).

Wadler’s key insight was that the use of pattern matching allowed
us to retain information that would otherwise be lost when perform-
ing abstract interpretation [Wadler, 1987]. Whereas in our previous
abstract interpretation from Section 4.3 we had to join (t) all of the
branches in a Case expression, we can now use the fact that we know
Nil is always the >∈ value in our domain. Why is this? Because Nil
is a fully defined list with no bottom elements!

This means that we only have to consider the value of a# when our
Case expression matches on >∈. This prevents the definedness of a#

from preventing more accurate approximations for when the list is
less defined than >∈, solving our first issue.

11 We use the notation found in [Turner, 2012] for abstracting a variable from an ex-
pression: [x]e denotes abstracting occurrences of x out of e. This results in a function
equivalent to (λx→ e).

66

A [[Case xs [Nil → e1, Cons y ys → e2]]] φ
| xs# == >∈ = a# t f # > >∈
| xs# == ⊥∈ = f # ⊥ >∈ t f # > ⊥∈
| xs# == ∞ = f # >∞
| otherwise = ⊥

where
xs# = A [[xs]] φ
a# = A [[e1]] φ
f # = [ys][y](A [[e2]] φ)

Figure 21: Abstraction of Case Expressions on Lists

problem 2 : The second problem was choosing appropriate ap-
proximations for the bindings introduced with the Cons alternative.
Happily, this turns out to be quite easy to solve.

In our two-point analysis all bindings introduced by an alternative
to a Case expression are approximated by > because we do not ‘know’
how to approximate non-flat structures. When evaluating a Case on
our four-point domain we can use the knowledge we have of what
lists each point in the domain corresponds to. We can use the defini-
tion of the primitive cons# as a lookup table, switching the right hand
and left hand sides of each equation. This gives us the following:

>∈ →cons# >>∈

⊥∈ →(cons# ⊥>∈) t (cons# >⊥∈) t (cons# ⊥⊥∈) t∞ →(cons# >∞) t (cons# >⊥) t (cons# ⊥∞) t (cons# ⊥⊥)

The absence of a rule for ⊥ is due to the fact that we would never
match on an undefined value, resulting in ⊥ regardless of the values
of the alternatives. We can also remove several of the alternatives in
the cases for ∞ and ⊥∈ due to the necessity for the abstraction of the
alternative branches to be monotonic [Wadler, 1987].12

Taking these insights into account leaves us with the rule for pat-
tern matching on lists seen if Figure 21.

meet and join are easily defined for the four-point domain. If we
assign each point in the domain a value according to its position in
the lattice, with ⊥ being 0 and >∈ being 3, we can define meet (u) as
min and join (t) as max.

12 For example, with ⊥∈ we will always have f#⊥⊥∈ v f#>⊥∈, making f#⊥⊥∈ unnec-
essary since x t y ≡ y when x v y. Applying this reasoning to ∞ leaves us with
only f#>∞ to consider.

67

With everything in place, we can now determine whether an anal-
ysis using this four-point domain is more suitable for implicit paral-
lelism.

Length and Sum

We will use the simple recursive length function for our first example
of using this analysis (sum is defined similarly, replacing the 1 with
y).

length xs = case xs of
Nil → 0

Cons y ys→ 1 + length ys

Because length and sum take only one argument, which is a list, we
must analyse the functions at each of the four points in our domain
for lists. Recursion can be dealt with in the same manner as shown
in Section 4.3. Once a fixed-point is reached we are left with the
following results.

xs# length# xs# sum# xs#

># > >
⊥# > ⊥∞ ⊥ ⊥
⊥ ⊥ ⊥

Table 2: Analysis of length# and sum# Using 4-point Domains

The results in Table 2 are exactly what we would expect. If length or
sum are passed infinite lists then program will result in non-termination.
sum has the additional constraint that all elements of its input list must
also be defined. This analysis would allow us to evaluate the argu-
ment to sum fully, in parallel, making it a significant improvement to
the simple two-point analysis from Section 4.3.

Discussion of Four-Point Strictness Analysis

Because lists are one of the most common structures in functional pro-
gramming, this development allowed strictness analysis to be useful
in a wide variety of ‘real’ systems. This also makes strictness analy-
sis’ use for parallelism more realistic. We can now tell the machine
to evaluate lists in parallel up to the degree that it is safe to do so.
Some of the more successful attempts at implicit parallelism were
based on using this strictness information, most notably Burn’s work

68

on parallelisation of functional programs for a Spineless G-Machine
[Burn, 1987] and the work of Hogen et al. [1992] on automatically
parallelising programs for a distributed reduction machine.

While this four-point domain made strictness analysis much more
flexible it suffers from a few considerable shortcomings:

1. An argument is only considered strict for a function if it is strict
in all possible contexts13 of that function

2. For other structures similar domains must be designed, i.e. there
does not seem to be straightforward way to derive a ‘good’ finite
domain for every recursive type

3. Even when the compiler writer designs additional abstract do-
mains for other recursive types, the calculation of fixed points
becomes prohibitively expensive with more complex abstract
domains

To illustrate the first problem we can study the results of applying
this analysis to the append function, which can be seen in Table 3.

ys#

>∈ ⊥∈ ∞ ⊥

xs#

># >∈ ⊥∈ ∞ ∞
⊥# ⊥∈ ⊥∈ ∞ ∞∞ ∞ ∞ ∞ ∞
⊥ ⊥ ⊥ ⊥ ⊥

Table 3: Analysis of append# xs# ys# Using 4-point Domains

We can see that while the first list is always strict up to WHNF, the
second list is not strict. This is unfortunate because we know that
append is strict in both arguments under certain conditions.

For example, if we pass the result of append to length then we know
that both argument lists for append must be finite for the result of the
call the length to terminate. The inability for this analysis to express
that form of strictness is a major weakness.

The limitations due to this first point were well known at the time
of Wadler’s paper on the four-point domain. However, the solutions
seemed ad-hoc and were on shaky theoretical grounds [Hughes, 1985,
1987]. The introduction of the four-point domain was successful, in
part, due to it fitting naturally in the strictness analysis techniques

13 In other words, an argument for a function is only strict if it is strict for all possible
uses of that function. We explore this further in the next section.

69

that were already understood. Fortunately, we have the benefit of
time and work on the analysis of strictness that takes into account
the use of a function, using projections, is much better understood
[Hinze, 1995; Sergey et al., 2014].

The need to design a suitable domain for each recursive type is
unfortunate. Ideally the strictness analysis in a compiler would work
on whatever types the programmer decides to define. Functional lan-
guages are often lauded for their ability to have few primitive types
and allow the programmer to define their own ‘first class’ types. Hav-
ing strictness analysis that only functions well on lists subverts this
ideal, creating a leaky abstraction. Programmers will use lists even
when inappropriate because the compiler is so much better at optimis-
ing them than any custom type. While not motivated by the second
issue, projection-based analysis solves it anyway, allowing strictness
analysis to be performed on arbitrary types with very few restrictions.

As for the third shortcoming, projection-based analysis does not
make calculating fixed points free. It does however shift the com-
plexity of the analysis. Instead of being exponential in the number
of arguments, it grows relative to the size of a function’s return type.
While not a panacea in this regard it does make projection-based anal-
ysis practical.

Overall, strictness analysis using the four-point domain is a signifi-
cant improvement over a basic two-point domain, particularly for use
in exploiting implicit parallelism. While having solved several of the
downsides of using a simple two-point domain, the four-point anal-
ysis still suffers from significant problems when taking our use-case
into account.

4.5 projection-based analysis

The shortcomings of the analyses based on the abstract interpretation
of programs motivated Wadler and Hughes to propose using projec-
tions from domain theory to analyse strictness [Wadler and Hughes,
1987].

For our purposes projection-based analysis provides two benefits
over abstract interpretation: simple formulation of domains to anal-
yse functions over arbitrary structures, and a correspondence with
parallel strategies [Marlow et al., 2010; Trinder et al., 1998]. This al-
lows us to use the projections provided by our analysis to produce an
appropriate function to compute the strict arguments in parallel.

70

We can frame the differences in the two approaches by thinking
about what each analysis is answering. Strictness analysis by abstract
interpretation asks “When passing ⊥ as an argument, is the result of
the function call⊥?”. Projection-based strictness analysis instead asks
“If there is a certain degree of demand on the result of this function,
what degree of demand is there on its arguments?”.

What is meant by ‘demand’? As an example, the function length
requires that the input list be finite, but no more. We can therefore
say that length demands the spine of the argument list. The function
append is a more interesting example:

append :: [α] → [α] → [α]

append [] ys = ys
append (x : xs) ys = x : append xs ys

As mentioned in the previous section the first argument must be
defined to the first cons, but we cannot know whether the second
argument is ever needed. However, what if the calling context of
append requires the result of append to be a finite list? For example:

lengthOfBoth :: [α] → [α] → Int
lengthOfBoth xs ys = length (append xs ys)

In this case both arguments to append must be finite. Projections can
be used to formalise this type of context [Wadler and Hughes, 1987;
Hinze, 1995], which we call a demand context.

Demand Context
The depth of a structure that is needed by the consumer of a
function’s result.

Demand Contexts allow us to reason about the various uses of a
function’s result, letting us reason about functions like append more
accurately. This, combined with their ability to analyse functions of
arbitrary types without the need to design abstract domains by hand,
make projection-based analysis the most realistic for our purposes of
utilising implicit parallelism.

4.5.1 Semantics of Projections

Given a domain D, a projection on D is a continuous function π :

D→ D that satisfies

71

π v ID (2)

π ◦ π = π (3)

Equation (2) ensures that a projection can not add any informa-
tion to a value, i.e. all projections approximate the identity function.
Idempotence (3) ensures that projecting the same demand twice on
a value has no additional effect. This aligns with our intuition of
demand. If we demand that a list is spine-strict, demanding spine-
strictness again does not change the demand on the list.

Because we want the introduction of parallelism to be semantics-
preserving we use the following safety condition for projections:

γ ◦ f = γ ◦ f ◦ π (4)

Given a function f : X → Y, and demand γ on the result of f we
wish to find a safe π such that the equality in Equation (4) remains
true. Projection-based analysis propagates the demand given by γ to
the arguments of f. This results in the demand on the arguments of
f given by π. The analysis aims to find the smallest π for each γ, but
approximating towards ID (as it is always safe to project the identity).

demands on primitives On unlifted base types, such as un-
boxed integers, there are two demands, ID and BOT , with the follow-
ing semantics

ID x = x (5)

BOT x = ⊥ (6)

When an expression is in a BOT context it means that non-termination
is inevitable. You can safely evaluate an expression in this context be-
cause there is no danger of introducing non-termination that is not
already present.

demands on lifted types Haskell’s non-strict semantics means
that most types we encounter are lifted types. Lifted types represent
possibly unevaluated values. Given a demand π on D, we can form
two possible demands on D⊥, π! and π?; strict lift and lazy lift respec-
tively. To paraphrase Kubiak et al.: π! means we will definitely need

72

π ::= BOT Bottom (hyperstrict)
| ID Top (the identity)
| 〈π1 ⊗ π2 · · · ⊗ πn〉 Products
| [C1 π1|C2 π2 . . . |Cn πn] Sums
| µβ.π Recursive Demands
| β Recursive Binding
| π? Strict Lift
| π! Lazy Lift

Figure 22: Abstract Syntax for Contexts of Demand

the value demanded by this projection, and we will need π’s worth
of it [Kubiak et al., 1992]. π? does not tell us whether we need the
value or not, but if we do need the value, we will need it to satisfy π’s
demand.

demands on products A projection representing a demand on
a product can be formed by using the ⊗ operator with the following
semantics

〈π1 ⊗ · · · ⊗ πn〉 ⊥ = ⊥

〈π1 ⊗ · · · ⊗ πn〉 〈x1, . . . , xn〉 = 〈π1x1, . . . ,πnxn〉

demands on sums If projections are functions on a domain, then |,
the operator that forms projections on sum types performs the case-
analysis. Each summand is tagged with the constructor it corre-
sponds to. Sometimes we will omit the constructor name when pre-
senting projections on types with a single summand (such as anony-
mous tuples).

[True ID|False BOT] True = True

[True ID|False BOT] False = ⊥

Figure 22 presents a suitable abstract syntax for projections repre-
senting demand. This form was introduced by Kubiak et al. and used
in Hinze’s work on projection-based analyses [Kubiak et al., 1992;
Hinze, 1995]. We have omitted the details on the representation of

73

context variables (for polymorphic demands). For a comprehensive
discussion we suggest Chapter 6 of Hinze’s dissertation [Hinze, 1995].

In short, projections representing demand give us information about
how defined a value must be to satisfy a function’s demand on that
value. Knowing that a value is definitely needed, and to what degree,
allows us to evaluate the value before entering the function.

Example Projections

Because our primitive values can be modelled by a flat domain (just
ID and BOT), our lattice of projections corresponds with the two-
point domain used in abstract interpretation.

2

For pairs of primitive values, possible contexts include:

[〈ID?⊗ ID?〉] (7)

[〈ID!⊗ ID?〉] (8)

As Haskell’s types are sums of products, pairs are treated as sums
with only one constructor. For product types each member of the
product is lifted. Context 7 is the top of the lattice for pairs, accepting
all possible pairs. Context 8 requires that the first member be defined
but does not require the second element. This is the demand that fst
places on its argument.

2

For polymorphic lists there are 7 principal contexts14 [Hinze, 1995];
3 commonly occurring contexts are:

µβ.[Nil ID|Cons 〈γ?⊗β?〉] (9)

µβ.[Nil ID|Cons 〈γ?⊗β!〉] (10)

µβ.[Nil ID|Cons 〈γ!⊗β!〉] (11)

Here µ binds the name for the ‘recursive call’ of the projection
and γ is used to represent an appropriate demand for the element
type of the list. An important point is that this representation for
recursive contexts restricts the representable contexts to uniform pro-
jections: projections that define the same degree of evaluation on each

14 All possible demands on polymorphic lists are instances of one of the 7 principal
contexts.

74

ID: accepts all lists

T (tail strict): accepts all finite lists

H (head strict): accepts lists where the head is defined

HT: accepts finite lists where every member is defined

Figure 23: Four contexts on lists as described in [Wadler and Hughes,
1987].

of their recursive components as they do on the structure as a whole.
The detailed reason for this restriction is given on page 89 of Hinze
[1995]. This limitation does not hinder the analysis significantly as
many functions on recursive structures are themselves uniform.

With this in mind, Context 9 represents a lazy demand on the list,
Context 10 represents a tail strict demand, and Context 11 represents
a head and tail strict demand on the list.

2

It will be useful to have abbreviations for a few of the contexts on
lists. These abbreviations are presented in Figure 23.

We can now say more about the strictness properties of append. The
strictness properties of a function are presented as a context trans-
former [Hinze, 1995].

append(ID) → ID!; ID?

append(T) → T !; T !

append(H) → H!;H?

append(HT) → HT !;HT !

This can be read as “If the demand on the result of append is ID
then the first argument is strict with the demand ID and the second
argument is lazy, but if it is needed, it is with demand ID.

2

Following Hinze [Hinze, 1995] we construct projections for every
user-defined type. Each projection represents a specific strategy for
evaluating the structure, as we shall define in section 5.2. This pro-
vides us with the ability to generate appropriate parallel strategies
for arbitrary types.

75

BOT &γ = BOT

γ&BOT = BOT

ID& ID = ID

α! &γ! = (α&γ)!
α! &γ? = (αtα&γ)!
α? &γ! = (α&γt γ)!
α? &γ? = (αt γ)?

BOT t γ = γ

γt BOT = γ

IDt ID = ID

α! t γ! = (αt γ)!
α! t γ? = (αt γ)?
α? t γ! = (αt γ)?
α? t γ? = (αt γ)?

Figure 24: Conjunction & and Disjunction t for Projections on Basic
and Lifted Values

4.5.2 Lattice of Projections

Having an intuition of what projections are we can now define how
we combine differing demands on values. In the previous analyses
we used the meet (u) and join (t) operations directly. Projections also
have meet (u) and join (t) , but because our projections are represent-
ing demand contexts we do not actually want to use meet (u) . Instead
we use &, where α & γ represents the joint demand of both α’s and
γ’s demand taken together. In other words, the projection α & γ only
accepts values that are accepted by α and γ, and returns ⊥ otherwise
(motivating the use of ‘conjunction’ to describe the operation). Using
& instead of u is standard when dealing with projections that act on
demands [Wadler and Hughes, 1987; Hinze, 1995; Sergey et al., 2014].

Figure 24 shows the rules for performing conjunction and disjunc-
tion of projections on basic values (either BOT or ID) and for lifted
values. Note that when we perform & on two projections with dif-
ferent lifts we must ensure that the resulting projection is not more
strict than the strictly lifted input, this ensures that we maintain our
desired safety condition.

Figure 25 shows the same operations for projections on sum and
product types. The only surprising aspect of the definitions is that
we are forced to normalise the result of a conjunction on product
types. This is because it possible for & to form a projection denoting
BOT even when both arguments are not BOT . For example, applying
& to a projection that only accepts True and a projection that only
accepts False results in the BOT projection. This is because there is

76

[C1α1| . . . |Cnαn]&[C1γ1| . . . |Cnγn]

= [C1(α1 &γ1)| . . . |Cn(αn &γn)]
[C1α1| . . . |Cnαn]t[C1γ1| . . . |Cnγn]

= [C1(α1 t γ1)| . . . |Cn(αn t γn)]

〈α1 ⊗ · · · ⊗αn〉&〈γ1 ⊗ · · · ⊗ γn〉
= norm

(
〈(α1 &γ1)⊗ · · · ⊗ (αn &γn)〉

)
〈α1 ⊗ · · · ⊗αn〉t〈γ1 ⊗ · · · ⊗ γn〉

= 〈(α1 t γ1)⊗ · · · ⊗ (αn t γn)〉

Figure 25: Conjunction and Disjunction for Projections on Products
and Sums

no possible Boolean value that the resulting projection will accept,
despite neither constituent projection denoting BOT .

The norm function recognises these projections and transforms them
to the direct representation of BOT .15

4.5.3 Recursive Types

For conjunction of projections on recursive types we have to perform
additional analysis to ensure that we maintain uniformity, which is
the property that the demand on the ‘recursive call’ of the type is
equal to the demand on the type itself (as mentioned in Section 4.5.1).
The subtlety is due to the fact that performing conjunction on two
recursive types might result in demands that differ on the ‘head’ of
the value from the demand on the recursive call [Kubiak et al., 1992;
Hinze, 1995].

A simple example is when we perform conjunction on the H and T
projections on lists (from Figure 23). If we naively perform conjunc-
tion as (µβ.α) & (µβ.γ) = µβ.α & γ, we arrive at HT, while this may
seem like the correct result it is actually unsafe! This is clear when
applying these projections to the list xs = 1 : ⊥ : []

15 norm is defined in Hinze [1995] Section 6.3.

77

(µβ.α) t (µβ.γ) = µβ.α t γ
(µβ.α) &(µβ.γ)| conj v β

1
& ′ β

2
= norm

(
µβ.α & γ

)
| conj v β

1
t ′ β

1
& ′ β

2
= µβ.α t α & γ

| conj v β
1

& ′ β
2
t ′ β

2
= µβ.α & γ t γ

| conj v β
1
t ′ β

2
= µβ.α t γ

where
conj = (norm(α[β 7→ β

1
])) & ′ (norm(γ[β 7→ β

2
]))

Figure 26: Conjunction and Disjuntion for Projections on Recursive
Types

H xs ≡ 1 : -- Head strictness forces the first element
T xs ≡ : : [] -- Tail strictness forces the spine
HT xs ≡ ⊥ -- HT forces all elements and the spine

The reason for the differing results is that H is not strict in the
recursive part of the list, but T is, and being head strict is not the
same as requiring all elements of a structure, as evidenced by the
following small program

f xs = a + b
where

a = head xs
b = length xs

The demand on the input list xs is the conjunction of the demands
for head and length but it is clear to see that f does not require its input
list to be fully defined, making it unsafe for H & T to result in HT.

2

The simplest way to maintain uniformity is to take the least upper
bound (t) of the two projections. However, this would be too conser-
vative and we would lose out on some strictness information that is
present. Fortunately, Hinze provides us with a method that allows us
to use more accurate approximations when it is safe to do so, relying
on join (t) only when necessary (the last guard in Figure 26). The
idea is to use versions of t and & that ignore all demands except
those on the recursive calls; these are written as t ′ and & ′. We then
see where in the lattice the result (conj) resides, performing the corre-
sponding approximation, defaulting to the always safe µβ.α t γ. For
details on how this method was derived and a proof of its safety, see
Hinze [1995] Section 6.4.

78

4.5.4 Projection-based Strictness Analysis

We are now able to present the analysis itself. Being a backward
analysis means that the result of our analysis is an environment that
maps variables to demand contexts on those variables. Disjunction
and conjunction on these environments simply performs the opera-
tions on the elements in the environment with the same key. If a key
is not present in an environment it is equivalent to having the lazy
demand (top of the demand context lattice for its type).

In order to understand the rules in Figure 27 we must introduce a
few small operators. The ↓ operator takes a projection on sum types
and a constructor tag and returns the projection corresponding to that
constructor:

[C1 α1 | . . . | Ci αi | . . . | Cn αn] ↓ Ci = αi

The ↑ operator performs the dual operation, injecting a projection
on one constructor into a projection on the corresponding sum type.
In the equation below BOT? (also known as the absent demand) repre-
sents the lazy lift of the bottom projection for the corresponding sum
type:

Ci ↑ π = [C1 BOT? | . . . | Ci π | . . . | Cn BOT?]

When analysing expressions wrapped in Freeze we have to be care-
ful because any demands that originate from suspended values are
not strict demands. The guard (�) operator accomplishes this:

! � π = π

? � π = π t abs(typeOf (π))

The abs(typeOf (π)) above gets the absent demand for the corre-
sponding type of the projection π.

The wrap and unwrap functions ensure that we handle recursive
types appropriately. unwrap is used to ‘unwrap’ the recursive knot
one level, so that

unwrap α@(µβ.[Nil π1 | Cons 〈 π2 ⊗ β` 〉]) =

[Nil π1 | Cons 〈 π2 ⊗ α` 〉]

wrap is the inverse operation, retying the recursive knot [Hinze,
1995, pg. 117].

Lastly, getProd takes a list of identifiers and a projection environ-
ment and returns the projection on the product made up by those
identifiers.

79

P :: Exp→ FunEnv# → Context→ Env#

P [[Var v]] φ π = {v 7→ π}

P [[Int i]] φ π = ∅
P [[Con c]] φ π = ∅
P [[Freeze e]] φ π` = ` � P [[e]] φ π
P [[Unfreeze e]] φ π = P [[e]] φ π!
P [[App (Con c) as]] φ π

| null as = ∅
| otherwise = overList φ (unwrap(π) ↓ c) as

P [[App (Fun f) as]] φ π
| null as = ∅
| otherwise = overList φ (φ f π) as

P [[Let b = e1 in e]] φ π = env
where
ρ = P [[e]] φ π
ρ ′ = ρ \ {b}
env = case lookup b ρ of

Nothing→ ρ ′

Just γ` → ρ ′ & (` � P [[e1]] φ γ)
P [[Case e [C1 cs1 → e1, . . . Cn csn → en]]] φ π

= ρ ′
1

&P [[e]]φ(wrap(C1 ↑ π1))
t · · · t
ρ ′n &P [[e]]φ(wrap(Cn ↑ πn))

where
ρ

1
=P [[e1]] φ π

...
ρn =P [[en]] φ π

(ρ ′
1
,π1) = (ρ

1
\ cs1, getProd cs1 ρ1

)
...

(ρ ′n,πn) = (ρn \ csn, getProd csn ρn)

Figure 27: Projection-based Strictness Analysis

80

4.6 summary

This chapter explored the most common static analyses used for strict-
ness analysis. Because the initial placement of parallelism is crucial to
our technique we explored each possible analysis in depth, highlight-
ing the drawbacks of the two-point and four-point analyses. While
projection-based analysis is significantly more complex, its ability to
determine the strictness properties of functions based on the demand
placed on their results provides too many benefits to ignore.

Many of the previous attempts and using strictness analysis for im-
plicit parallelism used the four-point analysis. Combined with evalua-
tion transformers (discussed in the next section) the four-point analysis
is able to identify a significant amount of parallelism. Unfortunately,
the analysis is limited to functions on lists, which while ubiquitous,
significantly restricts the potential of identifying parallelism in more
complex programs.

The projection-based analysis not only provides more insight into
functions like append, as discussed in Section 4.5.1, but it also allows
us to determine a useful set of strictness properties for functions on
arbitrary types. This greatly expands the applicability of the strict-
ness analysis for finding potential parallelism.

The major drawback of Hinze’s projection-based analysis is that we,
as compiler writers, no longer know in advance the set of demands
our analysis will return. With the four-point analysis we can hard-
code the parallel Strategies that correspond to each of the points in
the domain. If we expand our analysis to include pairs, we can again
add the corresponding strategies. With the projection-based analysis
we no longer have that foresight. This is the issue we address in the
next chapter.

81

5
D E R I VAT I O N A N D U S E O F PA R A L L E L S T R AT E G I E S

It would be premature to claim that par and Strategies are re-
dundant; [...]. Still, the difficulties with par indicate that it may
be more appropriate as a mechanism for automatic parallelisation,
than as a programmer-level tool.

– Marlow et al. [2011]

The information that projection-based strictness analysis provides us
is concerned with how defined a value must be for a function to be
defined given a certain demand on the result of that function. This
is reflected in the safety condition for this analysis, which we remind
ourselves of below:

γ ◦ f = γ ◦ f ◦ π (12)

The projection-based analysis attempts to determine the smallest
π that retains the semantics of f for a given γ. This tells us which
arguments, if any, are safe to evaluate before entering f. Our goal
now is to take a given π and transform a call to f so that as much
evaluation as π allows is done in parallel.

This chapter presents our method of achieving this goal automati-
cally. We describe this process as the derivation of parallel strategies
from projections representing demand on a value, and it forms a core
part of our contribution.

Plan of the Chapter

We discuss some parallels with Burn’s Evaluation Transformers in Sec-
tion 5.1 which can be seen as a limited, manual version of our tech-
nique. We then present our strategy-derivation rules in Section 5.2.
Section 5.3 demonstrates how we introduce the derived strategies to
the input program.

82

5.1 expressing need, strategically

Burn introduced the idea of evaluation transformers as a way to specify
how much of a value can be reduced safely before it is needed [Burn,
1987]. By using the results of a four-point strictness analysis Burn
was able to annotate expressions based on how much of the structure
could be safely evaluated. The main insight was that each annota-
tion represented a demand on the values and that demand could be
propagated to the sub-expressions in a well defined way.

Burn defined four ‘evaluators’, each for lists, with the following
meanings

• ξ0 performs no evaluation

• ξ1 evaluates its argument to WHNF

• ξ2 evaluates the spine of its argument

• ξ3 evaluates the spine of its argument and each element to
WHNF

These correspond directly to each point in Wadler’s four-point do-
main. The compiler can apply the relevant evaluation transformer
to each expression that it is safe to do so. Burn realised that the
strictness of certain functions can be dependent on which evaluation
transformer forced the evaluation of the function itself. With hind-
sight we can see that this is very similar to the motivation behind
projection based analysis (and indeed Burn noted this relationship in
later work. Additionally, the runtime system can keep track of which
evaluation transformer is used on each expression. This allows the
runtime system to propagate the evaluation transformers where pos-
sible.

5.1.1 Gaining Context

As noted above, Burn’s main insight was that strictness analysis using
Wadler’s four-point domain did not provide any information about
the demand context of a function application. This prevented the re-
sults of strictness analysis from identifying a substantial amount of
implicit parallelism, as noted in results for analysing append using the
four-point domain (Section 4.4, Table 3).

83

Burn was able to regain some of this context using a reverse four-
point domain analysis after first analysing the program with the origi-
nal four-point domain analysis [Burn, 1987, Section 4]. This results in
an evaluation transformer for each function in the program (if the types
do not have evaluators defined for them then only ξ0 and ξ1 are used,
which correspond to no evaluation and evaluation to WHNF, respec-
tively). The evaluation transformer for append is shown in Table 4, the
columns for append1 and append2 represent the appropriate evaluator
for the first and second argument to append, respectively.

E append1(E) append2(E)
ξ0 ξ0 ξ0
ξ1 ξ1 ξ0
ξ2 ξ2 ξ2
ξ3 ξ3 ξ3

Table 4: The Evaluation Transformer for append

Knowing the evaluation transformers themselves is not enough,
there must also be a way to utilise the information at runtime. Burn’s
resolution to this problem was to annotate the application nodes of a
program on the heap, i.e. dynamically. Each application node is tagged
with which evaluator from above is safe to use. The evaluation of a
program would proceed as normal with one addition: Whenever the
evaluator enters the code for a function it checks the evaluator tag of
the application node and then evaluates the argument nodes appro-
priately.

Some functions, such as length or primitive functions, always prop-
agate the same demand to their arguments; in the case of length
it is always ξ2. These functions form the starting points for the
propagation of the evaluation transformers. Given the expression
length (append xs ys) the propagation of the evaluator on length’s argu-
ment to appends arguments is shown in Figure 28. For a more detailed
exposition of how evaluation transformers are used at runtime see
Hogen et al. [1992, Section 3.1].

There are two downsides with this approach: the level of evalua-
tion is limited to pre-determined forms (in this case lists and basic
values) and it is the runtime system that determines how the evalu-
ation transformers are propagated. Ideally the propagation of de-
mand would be static so that the runtime system would not have
the additional bookeeping and management involved in the method
introduced by Burn.

84

@

ys@

append xs

@

length

ξ2

@

ys@

append xs

@

length

ξ2

ξ2

ξ2

Figure 28: The propagation of an evaluator using evaluation trans-
formers: when entering the code for length the evaluation trans-
former for append is indexed by ξ2, resulting in append’s arguments
being tagged by their appropriate evaluator

5.2 deriving strategies from projections

One of the reasons that projections were chosen for our strictness
analysis is their correspondence to parallel strategies. Strategies are
functions whose sole purpose is to force the evaluation of specific
parts of their arguments [Marlow et al., 2010; Trinder et al., 1998]. All
strategies return the unit value (). Strategies are not used for their
computed result but for the evaluation they force along the way.

Some Examples

The type for strategies is defined as type Strategy α = α → ().
The simplest strategy, named r0 in [Marlow et al., 2010], which

performs no reductions is defined as r0 x = (). The strategy for weak
head normal form is only slightly more involved: rwhnf x = x ‘seq‘ ()

The real power comes when strategies are used on data-structures.
Take lists for example. Evaluating a list sequentially or in parallel
provides us with the following two strategies

seqList s [] = ()

seqList s (x : xs) = s x ‘seq‘ (seqList s xs)

parList s [] = ()

parList s (x : xs) = s x ‘par‘ (parList s xs)

Each strategy takes another strategy as an argument. The provided
strategy is what determines how much of each element to evaluate. If
the provided strategy is r0 the end result would be that only the spine
of the list is evaluated. On the other end of the spectrum, providing a

85

C :: [[Demand]]→ Names→ Exp

C [[c?]]φ = λx→ ()

C [[c!]]φ = [[c]]φ

C [[µβ.c]]φ = fix (λn→ [[c]] (n : φ))

C [[β]] (n : φ) = n

C [[[cs]]]φ = λx→ Case x of A [[cs]]φ

C [[c]]φ = λx→ x ‘seq‘ ()

A :: [[(Constructor,Demand)]]→ Names→ (Pat,Exp)
A [[(C, ID)]]φ = (C, ())
A [[(C,BOT)]]φ = (C, ())
A [[(C, 〈cs〉)]]φ = (C vs,F [[ss]]φ)

where ss = filter (isStrict ◦ fst) $ zip cs vs
vs = take (length cs) freshVars

F :: [[[(Demand,Exp)]]]→ Names→ Exp

F [[[]]]φ = ()

F [[((c, v) : [])]]φ = App (Fun “seq”) [App (C [[c]]φ) [v], ()]
F [[((c, v) : cs)]]φ = App (Fun “par”) [App (C [[c]]φ) [v], ls]

where ls = F [[cs]]φ

Figure 29: Rules to generate strategies from demand contexts

strategy that evaluates a value of the list-item type a to WHNF would
result in list’s spine and elements being evaluated fully.

2

Already we can see a correspondence between these strategies and
the contexts shown in Figure 23. The T context (tail strict) corre-
sponds to the strategy that only evaluates the spine of the list, while
the HT context corresponds to the strategy that evaluates the spine
and all the elements of a list.

In our derived strategies it is not necessary to pass additional strate-
gies as arguments because the demand on a structure’s elements
makes up part of the context that describes the demand on that struc-
ture.

86

Derivation Rules

Because projections already represent functions on our value domain,
translating a projection into a usable strategy only requires that we
express the projection’s denotation in a syntactic form. The rules we
use are shown in Figure 29. Rule C constructs a strategy for all of
the context constructors except for products. This is because product
types are only found within constructors in the source language and
are therefore wrapped in sums as constructor-tag context pairs. These
pairs are handled by the A rule.

One aspect of strategies that does not directly correspond to a con-
text is the choice between seq and par. Every context can be fully
described by both sequential and parallel strategies. When a con-
structor has two or more fields, it can be beneficial to evaluate some
of the fields in parallel. It is not clear, generally, which fields should
be evaluated in parallel and which should be evaluated in sequence.
As shown in rule F we evaluate all fields in parallel except for the last
field in a structure. This means that if a structure has only one field
then its field will be evaluated using seq.

5.2.1 Specialising on Demand

The key reason for performing a strictness analysis in our work is to
know when it is safe to perform work before it is needed. This work
can then be sparked off and performed in parallel to the main thread
of execution. Using the projection-based analysis allows us to know
not only which arguments are needed, but how much (structurally) of
each argument is needed. We convert the projections into strategies
and then spark off those strategies in parallel.

Assume that our analysis determines that function f is strict in both
of its arguments. This allows us to convert

f e1 e2

into

let
a = e1

b = e2

in
(s1 a) ‘par‘ (s2 b) ‘seq‘ (f a b)

87

where s1 and s2 are the strategies generated from the projections
on those expressions.

Different Demands on the Calling Function

If a function has different demands on its result at different calling
sites, that is dealt with ‘for free’ using the transformation above. How-
ever, there may be multiple possible demands at the same call site.

This can happen when there are different demands on the calling
function, for example:

func x = f e1 e2

Different demands on the result of func may mean different de-
mands on the result of f . This in turn means that different transfor-
mations would be appropriate. Assume this results in having two
different demands on f . One demand results in the first transforma-
tion (funcD1) and the other results in the second (funcD2). How do
we reconcile this possible difference?

Specialisation by Demand

To accommodate this possibility we can clone the function func. One
clone for each demand allows us to have the ‘more parallel’ version
when it is safe, and keep the ‘less parallel’ version in the appropriate
cases. Note, we do not have to clone all functions with versions for
every possible demand. Instead we can do the following for each
function:

1. Determine which demands are actually present in the program

2. In the body of the function, do the different demands result in
differing demands for a specific function call?

3. If no, no cloning

4. If yes, clone the function for each demand and re-write the call-
sites to call the appropriate clone

Applying the above procedure to our hypothetical expression would
result in the following

88

funcD1 x = let
a = e1

b = e2

in
s1 a ‘par‘ s2 b ‘seq‘ f a b

funcD2 x = let
a = e1

in
s1 a ‘par‘ f a e2

Upgrading Hinze’s Analysis

Hinze’s projection-based analysis on its own is a context-insensitive
analysis.1 Each function is analysed in isolation, without concern for
how it is actually used. Therefore, while the projection-based analysis
gives us strictness properties for every possible demand context, we
are only able to use that information at differing call sites and do not
have contextual information about the demand at identical call sites
(as discussed above in the Section “Different Demands on the Calling
Function”).

By performing the specialisation outlined above we are able to
use the calling context of a function, making the combination of
the projection-based strictness analysis and the demand specialisa-
tion context senstive [Nielson et al., 1999]. Of course, this extra flexi-
bility came with some costs. The specialisation on demand requires
another pass of the program’s AST and results in some additional
code. This trade-off is well known in the static analysis community,
see Nielson et al. [1999, page 95]. Luckily, we have not found the
additional cost to be prohibitive in this instance.

5.3 using derived strategies

5.3.1 The Granularity Problem

We have now explained how we find the parallelism that is implicit
in our program, but none of the analysis we provide determines
whether the safe parallelism is worthwhile. Often static analysis will
determine that a certain structure is safe to compute in parallel, but it
is very difficult to know when it is actually of any benefit. Parallelism

1 This context refers to the call-string of a function and not to a demand context.

89

has overheads that require the parallel tasks to be substantial enough
to make up for the cost. A fine-grained task is unlikely to have more
computation than the cost of sparking and managing the thread, let
alone its potential to interrupt productive threads [Hammond and
Michelson, 2000; Hogen et al., 1992].

One of the central arguments in our work is that static analysis alone
is insufficient at finding both the implicit parallelism and determining
whether the introduced parallelism is substantial enough to warrant
the overheads.

Our proposal is that the compiler should run the program and use
the information gained from running it (even if it only looks at overall
execution time) to remove the parallelism that is too fine-grained. By
doing this we shift the burden of the granularity problem away from
our static analysis and onto our search techniques. This way our static
analysis is only used to determine the safe parallel expressions, and
not the granularity of the expressions.

Here we will describe the method by which we identify the safe par-
allelism in F-Lite programs and arrange for the evaluation of these ex-
pressions in parallel. The strictness properties of a function determine
which arguments are definitely needed for the function to terminate,
whereas the demand on an argument tells us how much of the argu-
ment’s structure is needed. Strategies are functions that evaluate their
argument’s structure to a specific depth. By analysing the program
for strictness and demand information, we can then generate strate-
gies for the strict arguments to a function and evaluate the strategies
in parallel to the body of the function. The strategies we generate will
only evaluate the arguments to the depth determined by the demand
analysis.

5.3.2 Introducing pars

While Section 4.5 shows how to derive parallel strategies from pro-
jections representing demand, we still require a method to introduce
the use of the strategies within the program. Happily, we can reuse
the results of the projection analysis for this task as well. The general
approach taken is to apply the generated strategies to the strict argu-
ments of a function. As discussed earlier, the strict arguments are safe
for evaluation in parallel. However, there are arguments to functions
that are clearly not worthwhile: constants, etc.. Because of this we

90

introduce an oracle that will determine which arguments should be
parallelised.

Example

Take the famous fib:

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = fib (n - 2) + fib (n - 1)

The results of the strictness analysis show us that both arguments
to + have the same demand: ID!. We therefore evaluate the recursive
calls to fib in parallel:

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = let a = fib (n - 2)

b = fib (n - 1)

in (s1 a) ‘par‘ (s2 b) ‘seq‘ a + b

There are two points to consider in the transformed program. One
is that by lifting subexpressions into let bindings we preclude the
possibility of certain compiler optimisations. The sharing of values is
essential for parallel strategies to be beneficial. In particular, thunk
elimination becomes more difficult. The other point is that we utilise
the common technique of combining pars and seqs in order to pre-
vent collisions between threads.

2

In order to address the granularity problem [Hammond and Michel-
son, 2000] we use a simple oracle to determine whether a subexpres-
sion should be evaluated in parallel. Recall that our oracle should be
generous in ‘allowing’ subexpressions to be evaluated in parallel. Our
iterative improvement reduces the amount of parallelism introduced
by static analysis. As the oracle’s only job is to determine whether a
subexpression is ‘worth’ the overhead of parallel evaluation it has the
type type Oracle = Exp -> Bool. The two trivial oracles are

allYes :: Oracle

allYes = const True

91

allNo :: Oracle

allNo = const False

allNo clearly defeats the purpose of an auto-parallelising compiler,
but allYes can serve as a stress-test for the iterative process. The
medium oracle used in our results returns True if the expression con-
tains a non-primitive function call, False otherwise.

mediumOracle e = or $ map f (universe e)

where

f (App (Fun n) as)

| n ‘elem‘ prims = False

| otherwise = True

f _ = False

Here, universe takes an expression e and provides a list of all the
valid subexpressions of e, reaching the leaf nodes of the AST.

The transformation we apply is simple. For each function applica-
tion f e1 . . . en:

1. Gather all the strict argument expressions to a function

2. Pass each expression to the oracle

3. Give a name (via let-binding) to each of the oracle-approved
expressions

4. Before calling f, spark the application of the derived strategy to
the appropriate binding

5. If there are multiple arguments that are oracle approved, ensure
that the last argument has its strategy applied with seq

We now have the necessary mechanisms in place for the introduction
of parallelism into a program.

92

Part III

Experimental Platform,

Benchmark Programs, and

Results

93

6
E X P E R I M E N TA L P L AT F O R M

Compilers for functional languages are not new. More importantly,
implementations of functional compilers have been described in de-
tail in the literature and provide a strong foundation for us to build
upon. Most of what we have implemented uses standard techniques
for the compilers of lazy languages and, apart from the automatic
derivation of strategies detailed in the last chapter, our contribution
in the implementation is the incorporation of runtime feedback.

For our compiler and runtime system we have opted to use a byte-
code compiler that produces code for a variant of the G-Machine [Au-
gustsson and Johnsson, 1989a]. We then pass our G-code to a virtual
machine that executes the program. While more efficient methods of
compilation are known (see the STG-Machine and its improvements
[Peyton Jones, 1992; Marlow and Peyton Jones, 2006]) an interpreter
works for our purposes because we aim to simulate parallel execution.
The use of simulation for profiling, debugging, and analysing parallel
programs is not new [Loidl, 1998] , and it provides a few important
benefits:

1. Avoids non-determinism introduced by the operating system
scheduler

2. We are able to log information without affecting the runtime of
the program

3. Ability to use simple memory management schemes without
worry of thread-safety

Of course while simulation makes certain implementation tasks
simpler, it is only worthwhile if there is some correspondence be-
tween the simulated runtime and the actual runtime when run on a
truly parallel system (such as GHC). Luckily, the work on GranSim
and on the Quasi-Parallel evaluator for GRIP [Peyton Jones et al.,
1987] show that this is indeed the case.

Being freed from the non-determinism of the OS scheduler is a sig-
nificant benefit for an iterative compiler. This allows the compiler to
assume that a single execution is representative of the current pro-
gram. With non-determinism in the running of the program, the

94

compiler would have to perform repeat executions for each compiler
iteration. This increases the cost of iterative compilation.

Plan of the Chapter

As mentioned in Section 4.5, a higher-order analysis that is suitable
for the derivation of parallel strategies does not yet exist. As a conse-
quence of this, our compiler must ensure that all programs are first-
order before strictness analysis is performed. Section 6.1 describes
the method we use to convert our higher-order input programs into a
first-order equivalent. Section 6.2 presents the runtime statistics that
we are able to measure in our runtime system. Section 6.3 discusses
the method we use to incorporate the runtime profile data along with
an alternative method that may be useful in future work. Lastly, Sec-
tion 6.4 provides an overview of the set of benchmark programs we
use in the chapters to come.

6.1 defunctionalisation (higher-order specialisation)

After parsing, the next stage of the compiler applies a defunctionalis-
ing1 transformation to the input programs. Our defunctionalisation
method is limited in scope, but sufficient for our purposes. It spe-
cialises higher-order functions defining separate instances for differ-
ent functional arguments. We are careful to preserve sharing during
this transformation. Here we give our motivation for introducing this
transformation.

A significant motivator is that our chosen strictness analysis cannot
cope with higher-order programs. However, it would certainly be pos-
sible to extend such an analysis to higher-order functions if required,
but our use-case provides other incentives to remove higher-order
functions. When taken together we do not see defunctionalisation as
a compromise but as an enabling mechanism for implicit parallelism.
Defunctionalisation increases the number of call sites and therefore
increases the number of verb-par- sites available to the iterative por-
tion of the compiler.

1 Some have taken issue with our use of the term ‘defunctionalisation’. Many see
defunctionalisation as the specific transformation introduced by Reynolds [Reynolds,
1972] to remove higher-order functions from programs. However, we feel that de-
functionalisation is the concept of transforming a higher-order program to a first-
order program. Reynold’s transformation is but one instantiation of this concept.

95

Central to our thesis is the concept of par placement within a pro-
gram. Each par application can be identified by its position in the AST.
In a higher-order program basing our parallelism on the location of
a par would very likely lead to undesirable consequences. This is
because parallelising the application of a function to its arguments
becomes more difficult when the function in question is unknown.
Take foo below, which takes a functional argument g.

-- ‘g’ is a functional argument
foo g = . . . g e1 e2 . . .

Our goal is to parallelise the evaluation of e1 and e2 when it is
safe to do so, but because we lack concrete information about the
strictness of g it is not possible to know when it is.

By defunctionalising we gain a new instance of foo for every unique
functional argument. If foo was passed the functions bar and qux in
our program that would leave us with the following function defin-
tions.

foobar = . . . bar e1 e2 . . .

fooqux = . . . qux e1 e2 . . .

Now we are able to analyse the instantiations of foo independently.
If bar is strict in both its arguments but qux is not, we face no dilemma.

foobar = . . . let
e
′
1
= e1

e
′
2
= e2

in
e
′
1

‘par‘ e
′
2

‘par‘ bar e1 e2

. . .

fooqux = . . . qux e1 e2 . . .

We can have our cake and eat it too! We retain our safety but are
able to maximise the parallelism that our compiler introduces.

In addition to allowing the compiler to introduce more parallelism,
defunctionalisation aids in the iterative portion of our work. For ex-
ample, a common pattern in parallel programs is to introduce a par-
allel version of the map function

parMap :: (a -> b) -> [a] -> [b]

parMap f [] = []

parMap f (x:xs) = let y = f x

in y ‘par‘ y : parMap f xs

96

There is inevitably some overhead associated with evaluation of
a par application, and of sparking off a fresh parallel thread. So if
the computation f x is inexpensive, the parallelism may not provide
any benefit and could even be detrimental. As parMap may be used
throughout a program it is possible that there are both useful and
detrimental parallel applications for various functional arguments:
parMap f may provide useful parallelism while parMap g may cost
more in overhead than we gain from any parallelism. Unfortunately
when this occurs we are unable to switch off the par for parMap g

without losing the useful parallelism of parMap f. This is because
the par annotation is within the body of parMap. By specialising
parMap we create two separate functions: parMap_f and parMap_g,
with distinct par annotations in each of the instances of parMap.

parMap_f [] = []

parMap_f (x:xs) = let y = f x

in y ‘par‘ y : parMap_f xs

parMap_g [] = []

parMap_g (x:xs) = let y = g x

in y ‘par‘ y : parMap_g xs

After defunctionalisation we can determine the usefulness of paral-
lelism in each case independently. The plan is to deactivate the par

for the inexpensive computation, g x, without affecting the parallel
application of the worthwhile computation, f x.

The code duplication from this defunctionalisation is allowing the
compiler to simulate the results of a context-sensitive higher-order
analysis with the results of Hinze’s context-insensitive first-order anal-
ysis. This echos the specialisation by deman from Section 5.2.1, which
also used code duplication in order to simulate some context-sensitivity.

6.1.1 How We Defunctionalise

Our defunctionaliser makes the following set of assumptions:

• Algebraic data structures are first-order (no functional compo-
nents)

• The patterns on the left-hand side of a declaration have been
compiled into case expressions

97

• Functions may have functional arguments but their definitions
must be arity-saturated and return data-value (i.e. not function)
results

• No explicit lambdas in the program, but partial applications are
permitted

With these assumptions in mind, the rules for defunctionalisation
are presented in Figure 30. These rules are applied to the AST in a
bottom-up fashion. This allows the transformation to assume that the
arguments to partially applied functions (like e ′1 in (1)) have already
been defunctionalised.

example Take reverse defined as an instance of foldl:

reverse xs = foldl (flip Cons) Nil xs

this becomes

reverse xs = foldl_flip_Cons Nil xs

foldl_flip_Cons z xs

= case xs of

Nil -> z

Cons y ys ->

foldl_flip_Cons (flip_Cons z y) ys

flip_Cons xs x = Cons x xs

2

The defunctionalisation rules are admittedly simple and we do not
claim a contribution with this method. A production system would
likely need to develop a more robust method of defunctionalisation
or opt for a higher-order strictness analysis.

Now that our programs are defunctionalised we are able to take
advantage of our chosen strictness analysis.

6.2 keeping track of all the threads

Before we discuss the techniques used for disabling the parallelism
that is too costly, we must first discuss how we determine which par

sites are not worthwhile. This involves recording a significant amount

98

f e1 . . . ei−1 (g e ′1 . . . e
′
m) ei+1 . . . e#f 0 6 m < #g

=⇒ f〈i,g,m〉 e1 . . . ei−1 e
′
1 . . . e

′
m ei+1 . . . e#f

(13)

f x1 . . . xn = e

=⇒ f〈i,g,m〉 x1 . . . xi−1 y1 . . . ym xi+1 . . . xn

= e[g y1 . . . ym/xi]

(14)

Figure 30: Rules for Defunctionalisation. #f and #g represent the ari-
ties of the functions. (1) refers to the transformation at the call site, (2)
describes the transformation of the definition, creating a new version
of f that has been specialised at its ith argument with function g and
m arguments to g.

of runtime information and a method for safely switching off the par

annotations.
As mentioned earlier, our runtime system is designed in the tra-

dition of projects like GranSim [Loidl, 1998]. The goal is to have as
much control of the execution substrate as possible. This allows us
to investigate certain trade-offs while ensuring that we minimise con-
founding variables.

Logging

The runtime system maintains records of the following global statis-
tics:

• Number of reduction cycles

• Number of threads

• Number of blocked threads

• Number of active threads

These statistics are useful when measuring the overall performance
of a parallel program, but tell us very little about the usefulness of
the threads themselves.

In order to ensure that the iterative feedback system is able to de-
termine the overall ‘health’ of a thread, it is important that we collect
some statistics pertaining to each individual thread. We record the
following metrics for each thread:

99

• Number of reduction cycles

• Number of threads generated

• Number of threads blocked by this one

• Which threads have blocked the current thread

This allows us to reason about the productivity of the threads them-
selves. An ideal thread will perform many reductions, block very few
other threads, and be blocked rarely. A ‘bad’ thread will perform few
reductions and be blocked for long periods of time.

6.2.1 Adjusting the Cost of Parallelism

Because our simulator abstracts away from many of the bookkeep-
ing details of the runtime system the creation and management of a
thread is very close to free. In fact, the creation of a parallel task only
costs the time of the par function itself. This only requires a handful
of instructions. This is clearly too optimistic. In order to better model
the fact that creating and managing parallel tasks incurs real cost, we
must implement a method of simulating this overhead. We do this by
increasing the number of reductions required to execute the par func-
tion, this creates additional overhead for each new thread. In Chapter
8 we will see the effect of manipulating the amount of overhead for
each new thread.

6.3 trying for par : switching off parallelism

We are now able to describe the last piece of the puzzle. Once we have
recorded our runtime feedback we must then modify the amount of
parallelism in the program. There are at least two suitable methods
for accomplishing this task:

1. Have the compiler use the feedback before bytecode generation
and transform the program accordingly

2. Incorporate the feedback by modifying the bytecode itself

We have chosen the latter option as it suits our needs and provides
sufficient foundation for further exploration. That being said there is
an explicit trade-off that has occured.

100

6.3.1 Switchable pars

In order to take advantage of runtime profiles we must be able to
adapt the compilation based on any new information. One choice is
to recompile the program completely and create an oracle that uses
the profiles. This way the oracle can better decide which subexpres-
sions to parallelise. Our approach is to modify the runtime system so
that it is able to disable individual par annotations. When a specific
par in the source program is deactivated it no longer creates any par-
allel tasks while still maintaining the semantics of the program. The
method has two basic steps:

• par’s are identified via theG-Code instruction PushGlobal "par"

and each par is given a unique identifier.

• When a thread creates the heap object representing the call to
par the runtime system looks up the status of the par using its
unique identifier. If the par is ‘on’ execution follows as normal.
If the par is ‘off’ the thread will ignore the G-Code instruction
Par.

There is one exception to the above rules. If a par is within a derived
strategy switching it ‘off’ turns it into a seq. This is because the
demand for that part of the structure has not gone away. If the overall
strategy is not worthwhile than its top-level par will be switched off
completely.

6.4 benchmark programs

In this section we will give a brief introduction to the benchmark
programs that are used in experimenting with our platform. We have
also provided the source listing for each program in Appendix A.

sumeuler SumEuler is a common parallel functional program-
ming benchmark first introduced with the work on the 〈ν,G〉-Machine
in 1989 [Augustsson and Johnsson, 1989b]. This program is often
used as a parallel compiler benchmark, making it a ‘sanity-check’ for
our work. We expect to see consistent speed-ups in this program
when parallelised (9 par sites).

queens and queens2 We benchmark two versions of the nQueens
program. Queens2 is a purely symbolic version that represents the

101

board as a list of lists and does not perform numeric computation
(10 par sites for Queens and 24 for Queens2). The fact that Queens2

has more than double the number of par sites for the same problem
shows that writing in a more symbolic style provides more opportu-
nity for safe parallelism.

sodacount The SodaCount program solves a word-search prob-
lem for a given grid of letters and a list of keywords. Introduced
by Runciman and Wakeling, this program was chosen because it ex-
hibits a standard search problem and because Runciman and Wake-
ling hand-tuned and profiled a parallel version, demonstrating that
impressive speed-ups are possible with this program [Runciman and
Wakeling, 1996] (15 par sites).

tak Small recursive numeric computation that calculates a Takeuchi
number. Knuth describes the properties of Tak in [Knuth, 1991] (2 par

sites).

taut Determines whether a given predicate expression is a tautol-
ogy. This program was chosen because the algorithm used is inher-
ently sequential. We feel that it was important to demonstrate that not
all programs have implicit parallelism within them, sometimes the
only way to achieve parallel speed-ups is to rework the algorithm (15

par sites).

matmul List-of-list matrix multiplication. Matrix multiplication
is an inherently parallel operation; we expect this program to demon-
strate speed-ups when parallelised (7 par sites).

102

7
R U N - T I M E D I R E C T E D S E A R C H

[...] even in a conservative regime, too much parallelism may be
generated. This can raise serious resource-management problems

– Peyton Jones [1987]

Having explored the design of our experimental platform we can now
begin describing some of the experiments that we have conducted. In
this chapter we use standard bitstring search techniques during our
iterative step, i.e. we do not utilise any runtime information other
than the actual running time of the program. In other words, this
chapter presents ‘black-box’ exploration of the search space.

The intuition is that because each par site is a switch, our technique
lends itself to representing the ‘setting’ of our parallel program as
a bitstring, each index in the string representing a single par. The
fitness function, in our case, is the program’s execution time. The
healthier a par setting, the faster our program will run.

Plan of the Chapter

The rest of this chapter describes our technique in more detail. Sec-
tion 7.1 presents the two heuristic algorithms that we will use and the
expected trade-offs for each. We describe our empirical method and
results in Section 7.3. Lastly, we offer our conclusions and discuss
related work in Section 7.4.

7.1 heuristic algorithms

Because we have chosen to perform the iterative step of compilation
after bytecode generation, we can know statically how many pars
are in a program. This allows us to represent a specific setting of
a program’s parallelism by a bitstring of static length, allowing us to
perform standard search techniques. The motivation for doing so is
simple: while our platform can record runtime statistics and profil-

103

ing data, the overall goal is to produce a program that performs better
than the input program. The collection of profiling data is simply one
means of accomplishing this (which we will investigate in Chapter 8).
Using the target goal, the improved performance of our program, as
a fitness function allows this method to be used even when a runtime
system is not able to record such profiling data.

There are a number of heuristic search techniques that perform
search-space exploration using the evaluation of a fitness function
[Russell and Norvig, 1995]. For this thesis we have chosen to explore
two algorithms: a greedy algorithm, guaranteed to take linear time in
the number of bits, and a hill-climbing algorithm that explores more
of the search space but at the cost of being potentially exponential in
the number of bits.

representation We represent the choice of enabled pars as a
bitstring where a 1 indicates that the par is applied at a site, and 0

that it is not. The length of the bitstring is the number of par anno-
tations introduced by the static analysis and transformation stage of
the compiler.

Each index points to a unique address in the bytecode of the pro-
gram, and the order of bits does not have any semantic meaning, i.e.
the bit at index 1 does does not necessarily have any relationship to
the bit at index 2.

fitness For both algorithms we use the same fitness function: the
overall runtime of the program (measured in bytecode reductions).
Therefore we aim to minimise the result of a fitness evaluation.

7.1.1 Greedy Algorithm

The greedy algorithm is designed to be simple but effective. The intu-
ition is that each bit is either beneficial to the program’s performance,
or detrimental. Therefore the greedy algorithm visits each bit exactly
once. By never revisiting a bit after a decision has been made about it
we can guarantee a linear time complexity.

The greedy algorithm considers the bits in our representation in a
random order. This avoids any potential bias toward the early bits
in a bitstring. As each bit is considered, the bit is flipped from its
current setting and the program is evaluated using the settings of the
resulting bitstring; the setting of the bit—current or flipped—with the

104

Algorithm: Greedy bitstring search
Data: An initial par setting as a bitstring of size N
Result: The best performing bitstring

best.fitness← evaluateProg()

best.setting ← setting

for i← 1 to N do
j← uniqueRand(N)

flipSwitch(setting[j])

fitness← evaluateProg()

if fitness < best.fitness then
best.fitness← fitness
best.setting ← setting

else
flipSwitch(setting[j])

return best.setting

Algorithm 1: Greedy par-Setting Search

better fitness is retained. The algorithm terminates once all the bits
have been evaluated.

The listing in Algorithm 1 provides the actual algorithm used in
performing our greedy search. There are a few points to be aware of:

• The function uniqueRand provides random numbers but en-
sures that the same index will not be visited twice.

• The function evaluateProg runs the loaded bytecode file, re-
turning the global reduction count

• flipSwitch modifies the bytecode pointed at by an index so
that the function calls switches from par to parOff or vice versa

• best is a structure containing a fitness value and a bitstring of
par settings

7.1.2 Hill-Climbing Algorithm

We use a simple hill-climbing algorithm in which the neighbours of
the current bitstring are those formed by flipping a single bit. At each
iteration, these neighbours of the current bitstring are considered in
a random order, and the fitness evaluated for each in turn. The first
neighbour that has a better fitness, i.e. fewer reductions are made
by the main thread, than the current bitstring becomes the current

105

Algorithm: Hill-Climbing bitstring search
Data: An initial par setting as a bitstring of size N
Result: The best performing bitstring

best.fitness←∞; best.setting ← setting

while searching do
searching ← False

for i← 1 to N do
j← uniqueRand(N)

flipSwitch(setting[j])

fitness← evaluateProg()

if fitness < best.fitness then
best.fitness← fitness
best.setting ← setting

searching ← True

break
else

flipSwitch(setting[j])

refreshUniques()

return best.setting

Algorithm 2: Hill-Climbing par-Setting Search

bitstring in the next iteration. The algorithm terminates when no
neighbour of the current bitstring has a better fitness.

Our hill-climbing algorithm (shown in Algorithm 2) is only slightly
more complex than our greedy algorithm, but much more powerful.
Its power comes from its ability to revisit indices in the bitstring. The
function refreshUniques resets the state within uniqueRand to allow
for already visited indices to be generated again. However it does not
reset the key in the psuedorandom number generator.

106

7.1.3 Initial par Setting

While we now have both algorithms in hand, there is still an impor-
tant decision to be made. As shown in the algorithm listings, neither
algorithm initialises the bitstring representing our par setting. There
are three obvious choices available to us:

1. All bits on

2. All bits off

3. A random bitstring

Based on our problem domain, option 1 seems the most intuitive.
We would like to begin with as much parallelism as possible, and
prune out detrimental pars. For this reason, we will not consider op-
tion 2. Additionally, many par sites are only meaningful when other
pars are turned on.1 However, it is possible that by starting in a ran-
dom location in the search space, we may avoid a local optimum that
our search techniques may encounter. So we experiment with both
an initial setting with all pars on, and with random initial settings.2

7.2 research questions

Because the two algorithms we are exploring have stochastic aspects it
is important that we are careful in measuring the results and ensuring
that we use proper statistical methods when deciding whether our
technique ‘works’.

Part of this process is deciding on what we are testing before we run
the experiments and perform any statistical analysis. This ensures
that we compare the appropriate statistics.

The main thesis of our work is that by adding an iterative step to
the automatic parallelisation we get better performance than through
static analysis alone. Therefore, the most important question to test
is the following:

1 The pars that we within strategies are only meaning when the strategy itself is
sparked off in parallel.

2 We realise that by being random we actually include option 2 as well, but it becomes
a rare edge-case.

107

rq1 What speed-up is achieved by using search to enable a sub-
set of pars compared to enabling all the pars found by static analysis?

While the previous question is important, it is also important that we
gain speedups as compared to the sequential version. With this in mind,
it is important to ask the following question:

rq2 What speed-up is achieved by parallelisation using search
compared to the sequential version of the software-under-test (SUT)?

As discussed in the last section, we consider two algorithms: a simple
hill-climbing algorithm and a greedy algorithm:

rq3 Which search algorithm achieves the larger speed-ups, and
how quickly do these algorithms achieve these speed-ups?

Because we have decided to use two methods for the initial par set-
tings we have one final research question:

rq4 Which form of initialisation enables the algorithm to find the
best speed-ups: all pars enabled (we refer to this as ‘all-on’ initialisa-
tion), or a random subset enabled (‘random’ initialisation)?

7.3 experimental setup and results

In this section we evaluate the use of search in finding an effective
enabling of pars that achieves a worthwhile speed-up when the par-
ellelised program is run in a simulated multi-core architecture. As a
reminder, the starting point for our proposed technique is a program
that was originally written to be run sequentially on a single core;
static analysis identifies potential sites at which par functions could
be applied; and then search is used to determine the subset of sites at
which the par is actually used.

7.3.1 Method

The following four algorithm configurations were evaluated:

• hill-climbing with all-on initialisation

• greedy with all-on initialisation

108

• hill-climbing with random initialisation

• greedy with random initialisation

Each algorithm configuration was evaluated for four settings of the
number of cores: 4, 8, 16 and 24 cores. Each algorithm / core count
combination was evaluated against each of the seven benchmark pro-
grams described above.

Since both search algorithms are stochastic, multiple runs were
made for each algorithm / core count / benchmark combination,
each using 30 different seeds.3for the pseudo-random number gen-
erator. For all runs, after each fitness evaluation, the best bit string
found and its fitness (the number of reductions made by the main
thread), was recorded.

In addition, the fitness (number of reductions) was evaluated for a
bit string where all bits are set to 1. This evaluation was made for
each combination of core count and benchmark. Finally, the fitness
was evaluated for the sequential version of each benchmark.

overheads Our runtime system allows us to set the cost of cre-
ating a parallel task, this models the overhead present in real sys-
tems. Using the Criterion [O’Sullivan, 2009] benchmarking library
we found an approximate cost for the creation of a par in GHC’s
runtime.4 For the experiments we have chosen an overhead of 300
reductions for each call to par.

7.3.2 Results

The results are summarised in Table 5. This table compares the speed-
up, calculated as the ratio of the medians of the reduction counts, of
hill-climbing with all-on initialisation compared to (a) the parallelisa-
tion that would result from the static analysis without optimisation;
(b) the sequential version of the program; (c) the greedy algorithm
with all-on initialisation; and (d) the hill-climbing algorithm with ran-
dom initialisation. The speed-up is calculated as the factor by which
the number of reductions is reduced, and so values greater than 1

indicate that the program parallelised using hill-climbing with all-on
initialisation would be faster in the multi-core environment. Values
in bold in the table indicate that differences between the algorithms

3 All seeds were obtained from www.random.org.
4 The code for benchmarking the cost of a par is available at https://github.com/
jmct/par-experiments

109

www.random.org
https://github.com/jmct/par-experiments
https://github.com/jmct/par-experiments

used to calculate the speed-up are statistically significant at the 5%
level using a one- or two-sample Wilcoxon test as appropriate.5 The
values bolded in blue are both statistically significant at the 5% level
and exhibit a speedup for more than 5%. This separates the statis-
tically significant speedups that are unlikely to manifest on a real
machine. The results for Taut, for example, are statistically faster,
but the difference is so minute (less than one tenth of a percent in
all cases!) that the non-determinism of a real architecture is likely to
render the speedup irrelevant.

7.3.3 Discussion of Research Questions

We can now look again at our four research questions from Section 7.2
and determine whether our experiments have given us meaningful
results to any of them.

rq1 For most of our benchmarks there is a relatively large speed-
up of the hill-climbing algorithm compared to the default paralleli-
sation where all pars are enabled. The largest speed-ups are for
Queens2 where we might expect a wall-clock run time that is more
than 6 times better than the default parallelisation. For Queens and
Taut the speed-ups are closer to 1, but are in all cases statistically
significant.

An interesting property regarding the speedups as compared to
the static placement is that they decrease as the number of cores in-
creases. This aligns with our intuition for parallel programs. As the
number of cores goes up, the static placement gets away with non-
optimal par placement. With more cores, there is less contention for
the resources of the machine. A par that does more work than its
overheads is less likely to interrupt another, more productive thread.
When the number of cores is lower, the contention makes even pro-
ductive pars detrimental because they interrupt threads that are even
more productive.

We conclude that both the greedy and the hill-climbing algorithm
can improve parallel performance across a range of benchmarks and

5 Since in the following we discuss the results for each benchmark program, or com-
bination of benchmark program and number of cores, individually as well as for
the entire set of results as a family, we do not apply a Bonferroni or similar correc-
tion to the significance level. Nevertheless we note here that most of the currently
significant differences would remain significant if such a correction were applied.

110

hill-climbing search speed-up compared to:

SUT Cores Static
Parallel

Sequential Greedy Random
Init

MatMul

4 4.903 1.021 1 1

8 4.625 1.021 1 1

16 4.485 1.021 1 1

24 4.439 1.021 1 1

Queens

4 1.080 1.294 1 1

8 1.043 1.369 1 1

16 1.017 1.401 1 1

24 1.003 1.401 1.000 1

Queens2

4 6.479 3.843 1 1

8 6.421 7.607 1 1

16 6.263 14.79 1 1

24 6.101 21.54 1 1

SodaCount

4 4.237 3.773 1.001 1.055
8 3.544 6.207 1.007 1.071
16 3.110 10.40 1.081 1.072
24 2.810 13.26 1.004 1

SumEuler

4 1.494 3.948 1 1

8 1.486 7.773 1 1

16 1.460 14.77 1 1

24 1.432 20.69 1 1

Tak

4 1.609 1.560 1 1

8 1.609 3.118 1 1

16 1.608 6.230 1 1

24 1.608 9.330 1 1

Taut

4 1.000 1.000 1.000 1

8 1.000 1.000 1.000 1.000
16 1.000 1.000 1.000 1

24 1.000 1.000 1.000 1

Table 5: The speed-up, calculated as the ratio of the medians of the
reduction counts, achieved by the hill-climbing algorithm us-
ing all-on initialisation.

111

across a range of core counts when compared to using the static place-
ment of parallelism.

rq2 For Queens2 and SumEuler, the speed-up compared to the se-
quential version of these benchmarks is almost linear: it approaches
the number of cores available. For example, for SumEuler on 4 cores,
the speed-up compared to the sequential version is 3.95. A linear
speed-up is the best that can be achieved, and so these results are in-
dicative that our proposed technique could be very effective in prac-
tice. Meanwhile, for other benchmarks such as MathMaul and Taut,
there is little speed-up over the sequential version of the benchmark.

rq3 The results show that for most benchmarks, there is little dif-
ference in the speed-up achieved by the hill-climbing and greedy al-
gorithm. (For clarity, the table shows the comparison only between
the two algorithms using all-on initialisation, but similar results are
obtained when initialisation is random.) Only for SodaCount is there
a non-trivial and statistically significant difference between the hill-
climbing and greedy algorithm for all core sizes. Figure 31 performs
a further analysis for this research question: for two of the bench-
marks, it plots the best speed-up (compared to sequential) obtained
so far by the algorithm against the number of fitness evaluations. For
Queens2 at all core counts, the greedy algorithm finds the same best
speed-up as the hill-climbing, but finds it in fewer fitness evaluations,
i.e. the search is faster. For SodaCount, the greedy algorithm finds
its best speed-up in relatively few evaluations. The hill-climber takes
longer but finds a better speed-up at all cores counts; the difference
is most noticeable in the results for 16 cores. For the goal of having a
compiler that provides you with a faster program while you take a tea
break, the greedy algorithm seems satisfactory. For frequently-used
benchmarks that account for a significant part of a system’s perfor-
mance, the additional effort required to find the best parallelisation
using hill-climbing may be justified, but will depend on context. In
the end this is a subjective trade off; we feel that the results support
the use of the greedy algorithm unless finding the optimal solution is
absolutely necessary.

112

0

5

10

15

20

0 25 50 75 100
evaluations

sp
ee

du
p

co
m

pa
re

d
to

 s
eq

ue
nt

ia
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(a) Queens2

5

10

0 20 40 60
evaluations

sp
ee

du
p

co
m

pa
re

d
to

 s
eq

ue
nt

ia
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(b) SodaCount

Figure 31: The speed-up, calculated as the ratio of the medians of the
reduction counts, obtained so far by the algorithm plotted against the
number of fitness evaluations. HC and G indicate the hill-climbing
and greedy algorithm respectively, both using all-on initialisation.
The numbers following the algorithm abbreviation indicate the num-
ber of cores.

113

rq4 For most benchmarks there is no statistically significant dif-
ference between all-on and random initialisation. For SodaCount, the
all-on initialisation is slightly better for core counts of 4, 8, and 16.
This result provides evidence that all-on initialisation may be benefi-
cial, but requires further investigation to confirm the generality.

The only results elided in Table 5 are the runtimes for the greedy
search with a random initialisation. This is because the random ini-
tialisation produces inferior results in all cases and the same insight
can be gathered from studying the hill-climbing results for random
initialisation.

7.4 summary of bitstring searching

We feel that this chapter has provided evidence that the combination
of static analysis and search can parallelise programs more effectively
than through static analysis alone. For some programs we are able
to achieve close to linear speed-ups which is as performant as can
expected. These results are promising for those looking to add iter-
ative capabilities to their compiler but without adapting the runtime
system. By choosing an appropriate representation of the available
parallelism in a program, we are able to use standard search tech-
niques to search the possible parallel configurations.

The success of the greedy algorithm was somewhat surprising. It
further supports the idea that the vast majority of potential paral-
lelism in any given program does not make up for the overhead costs
associated with creating and managing that parallelism.

114

8
P R O F I L E D I R E C T E D S E A R C H

When concurrent evaluation is used to gain efficiency one actually
would like to have an analyser that automatically marks expres-
sions that can safely be executed in parallel. [. . .] But one often
also needs to know whether parallel evaluation is worthwhile.

– Plasmeijer and Eekelen [1993]

The results from the previous chapter, while promising, assume that
the runtime system is a ‘black box’. In some cases it may be necessary
or desirable to make this assumption but we feel that with access
to information from the runtime system our technique can produce
meaningful results with fewer iterations.

The work in this chapter uses profile information and other statis-
tics from each iteration of the program before determining where to
proceed in the search space.

Plan of the Chapter

We begin by defining the concept of par site health in Section 8.1.
This metric provides us with a way to make decisions about how to
proceed at each iterative step. The algorithm for incorporating par

site health is presented in Section 8.2. We then present and discuss
the results of using this algorithm in Section 8.3, we also use the op-
portunity of having profiling information to experiment with various
simulated overheads for the ‘cost’ of a par. In Section 8.4 we show
how the benchmark programs perform when we naively transfer the
resulting programs to be compiled by GHC. Lastly, we provide a sum-
mary of our results from these experiments and some conclusions
that we can draw from them in Section 8.6.

115

1 2 3 4 5 6 7 8 9

101

102

103

104

105

Par-Site

R
ed
u
ct
io
n
C
ou

n
t

Par-Site Health for SumEuler

Figure 32: Statistics on the number of reductions carried out by the
threads a par site sparks off

8.1 par-site health

In this section we will present what it means for a par site to be
worthwhile. We do this by measuring the health of each par site.

The runtime system provides us with a variety of statistics about
threads and the pars that sparked them. However, our current ap-
proach focuses on reduction count as a guide to determine which
par sites are beneficial to the program. The reasoning is simple; our
motivation for parallelism is to do more work at once while ensur-
ing that each unit of work done by a thread makes up for the cost
of creating and managing that thread, so measuring the amount of
work undertaken by each thread is the most direct measure of this
desirable property.

Because we record how productive each thread in a program is and
we keep track of which par site created each thread, we can easily vi-
sualise how useful each par site is. Figure 32 gives an overview of the
health of each par site for the SumEuler benchmark. The plot shows
us the statistics for this data with the median (line), inter-quartile

116

range (IQR, box), and ±1.5∗IQR (whiskers). Statistical outliers are
shown as independent points. The par sites that only show a line as
their plot either have only one child thread (the case for par-site 1) or
have little variance in the distribution of reduction counts.

Even by just plotting this information we gain a much better under-
standing of SumEuler’s parallel behaviour. Much like using Thread-
scope [Jones et al., 2009], having this information helps the program-
mer (and the compiler in our case) make better decisions about where
to look for performance improvements. In the case of the profile
shown in Figure 32 we can clearly see that some par sites do not
spark hard-working threads.

Additionally, we can see that the variance between the productivity
of the threads sparked by a par site can be quite high (par site #4

sparks some threads that perform hundreds of reductions and some
that perform hundreds of thousands of reductions).

We define a pars health as the mean of the reduction counts for all
the threads sparked off by the par site in question. This simple view
provides a rough estimate of how worthwhile a par site is overall
while requiring very little computation on its own. Another impor-
tant aspect of this measure is that par site health is more of a relative
measure than an absolute measure. Trying to define what is healthy
or not healthy for all programs is difficult. Instead we aim to rank a
par’s health as compared to the other par’s in a program.

For the SumEuler program’s par sites as shown in Figure 32, this
means that par site numbers 3, 5, 7, 8, and 9 are less healthy than site
numbers 1, 2, 4, and 6.

8.2 search algorithm

The iterative step of our compiler must make a decision about which
par setting to provide the runtime with for the next execution of the
program. In the previous chapter we used heuristic techniques to
provide this decision making. Now we will use the notion of par site
health described in the previous section.

After every execution of the program, turn off the par site with
the lowest health (the lowest average reduction count). In the case of
the execution statistics displayed in Figure 32 we would disable par

site #8.1 allowing us to avoid the overhead of all the unproductive

1 Notice that par site #8 also has some very productive threads, but even so, its median
is the lowest in that run of the program.

117

threads it sparked off. Then repeat this process until switching a par

site off increases the overall runtime of the program.

Algorithm: Profile-Driven Search
Data: An initial par setting as a bitstring of size N (all bits on)
Result: The best performing bitstring

last.runtime←∞
for i← 1 to N do

current← evaluateProg()

if current.runtime > last.runtime then
break

else if allOff?(current.setting) then
return current.setting

last← current

weakest← calculateHealth()

flipSwitch(current.setting[weakest])

return last.setting

Algorithm 3: Greedy par-Setting Search

It is worth noting that our algorithm is really a hill-climbing algo-
rithm with an oracle. Instead of randomly evaluating neighbours, the
search moves to the neighbour where the weakest par site is switched
off. The success of this search algorithm will depend on how well this
corresponds to an increase in overall performance.

8.3 experimental results and discussion

In this section we present some preliminary results and point out
certain patterns that appear in our data.

Overheads

Whether an expression is worthwhile to evaluate in parallel is directly
tied to cost of creating a parallel task. Because our search algorithm
is not deterministic, we do not have the statistical issues that were
present in the previous chapter. Therefore we took the opportunity
to experiment with various overheads as well.

Based on the benchmarking of GHC’s par we have chosen a lower
and upper bound. While the lower bound (10) and the upper bound
(1000) are both unrealistic (i.e. benchmarking GHC points to the ac-

118

tual overhead being somewhere in the hundreds of reductions) this
will help us see how sensitive our approach is to the overhead of a
par.

Experimental Results

For each program we set our runtime system to simulate 4, 8, and
16 cores. First, let us examine Table 6 which displays the results of
setting the cost of task creation to 10 reductions.

Already there are a few interesting results. SumEuler performs as
expected and manages to eliminate the majority of the introduced
par sites. Interestingly, the par sites that remain are, when taken
together, equivalent to applying parMap euler over the input list.2

When this program is parallelised explicitly, that parMap is usually
the only addition to the program [Augustsson and Johnsson, 1989b].
It is reassuring that our technique converges on the same result.

The two implementations of nQueens vary drastically in their im-
provement, with the more symbolic solution (Queens2) achieving much
better results. Search problems are known to be problematic for tech-
niques involving strictness analysis and usually benefit from the intro-
duction of speculative parallelism [Hammond and Michelson, 2000].
Taut was chosen as a benchmark program specifically because the

program (as written) did not have many opportunities for parallelism.
Had our technique managed to find any useful parallelism, we would
have been surprised.
MatMul is, to us, the most surprising of the results so far. Matrix

multiplication is famously parallelisable and yet our implementation
barely breaks even! Notice that of the 7 par sites in MatMul, only 2

are being switched off. We will investigate MatMul’s performance in
a bit more depth in Section 8.5.

While the results in Table 6 are revealing, it could be argued that an
overhead of 10 reductions to spark off a thread is unrealistically low.
Therefore we repeat the experiments with the more realistic 100 re-
duction overhead (Table 7) and the pessimistic case of 1000 reduction
overheads (Table 8).

The results in Table 7 mostly align with what we would expect
to happen if creating a parallel task incurred higher overheads: we
see reduced speedup factors and adding more cores is less likely to
benefit.

2 See Appendix A for the source of the program.

119

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3·77 6 6·84 6 10·27
Queens 5 1·30 5 1·37 5 1·41
Queens2 22 3·91 22 7·74 22 15·07
SodaCount 3 2·42 3 4·72 3 8·95
Tak 1 3·39 1 6·79 1 13·58
Taut 4 1·00 0 1·00 9 1·00
MatMul 2 1·02 2 1·07 2 1·10

Table 6: Speedups relative to sequential computation when the cost
of sparking a task is set to 10 reductions. The number of
runs corresponds to the number of par sites that have been
switched off.

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3·74 6 6·81 6 10·23
Queens 5 1·29 5 1·37 5 1·41
Queens2 22 3·83 22 7·57 22 14·76
SodaCount 3 2·17 3 4·23 3 8·02
Tak 1 2·36 1 4·71 1 9·42
Taut 9 1·00 0 1·00 9 1·00
MatMul 2 0·93 2 1·06 2 1·09

Table 7: Speedups relative to sequential computation when the cost
of sparking a task is set to 100 reductions. The number of
runs corresponds to the number of par sites that have been
switched off.

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3·51 6 6·40 6 9·73
Queens 5 1·26 5 1·35 5 1·40
Queens2 22 3·14 22 6·22 22 12·18
SodaCount 12 1·85 3 2·08 1 1·39
Tak 1 0·57 1 1·15 1 2·32
Taut 12 1·00 12 1·00 7 1·00
MatMul 5 1·00 5 1·00 5 1·01

Table 8: Speedups relative to sequential computation when the cost
of sparking a task is set to 1000 reductions. The number of
runs corresponds to the number of par sites that have been
switched off.

120

The key point to take away from this set of results is that while
lower speedups are achieved, the same par sites are eliminated in the
same number of iterations.3

Now we try the same experiment again but with the less realistic
1000 reduction overhead to create a new thread.

While the speedups are now much more moderate (when there is
a speedup at all) these results are interesting for a few reasons.

In particular, the number of cores now has a greater influence on
how many par sites are worthwhile. SodaCount, for instance, now
eliminates 12 of its 15 par annotations in the case of 4-core execu-
tion. This fits with our intuition that when there are fewer processing
units the threads require coarser granularity to be worthwhile. In the
cases of 8 and 16-core executions we observe that fewer par sites are
disabled, reinforcing this intuition.

MatMul also sees a jump in the number of disabled par sites. Sadly,
this results in even worse performance for MatMul, which should be
a highly parallelisable program.

Static vs. Iterative

While the results presented in Tables 6, 7, and 8 are promising for
preliminary results they are based on an admittedly simple search
heuristic. Part of our argument is that static analysis alone is not
sufficient for good gains from implicit parallelism. Figures 33, 34,
35, and 36 present a selection of results that show how the iterative
improvement affects the static placement of par annotations.

3 Except for Taut, which in the 4-core case now takes 9 runs to determine that there is
no parallelism in the program.

121

0 1 2 3 4 5 6

Feedback Iteration

0

5

10

S
p
ee
d
u
p
co
m
p
ar
ed

to
se
q
u
en
ti
al

4 cores
8 cores
16 cores

Figure 33: SumEuler speedup

0 1 2 3 4 5

Feedback Iteration

1

1.25

1.5

S
p
ee
d
u
p
co
m
p
ar
ed

to
se
q
u
en
ti
al

4 cores
8 cores
16 cores

Figure 34: Queens speedup

122

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122

Feedback Iteration

0

5

10

15

S
p
ee
d
u
p
co
m
p
a
re
d
to

se
q
u
en
ti
al

4 cores
8 cores
16 cores

Figure 35: Queens2 speedup

0 1 2 3 4 5 6 7 8 9

Feedback Iteration

0.99

1

1.01

S
p
ee
d
u
p
co
m
p
ar
ed

to
se
q
u
en
ti
al

4 cores
16 cores

Figure 36: Taut speedup

123

Even in the cases where the final speedup is lower than anticipated,
such as Queens in Figure 34, the program still benefits from the iter-
ative improvement. Queens2 sees the highest payoff from iterative
improvement. Many of the pars introduced by the static analysis do
not contribute significantly to the computation even though it is se-
mantically safe to introduce them. The iterative loop converges on
the few par sites that make a significant difference.

It may be noticed that the iterative steps sometimes plateau for a
few iterations, this is particularly evident in Figures 33 and 35. The
reason for this is that a top-level strategy has been switched off, mak-
ing all of the pars that make up that strategy into dead code. Luckily
we can determine which pars are descended from other pars stat-
ically and skip these plateaus when they occur. This reduces the
number of iterative steps even further for some programs; Queens2
then takes only 14 iterative steps instead of 22, for example.

8.4 transfer to ghc

While the results above are encouraging,, we would like to see how
the resulting programs perform when compiled by a modern high-
performance Haskell compiler. To do this we extract the final par
settings from each program and translate that to Haskell suitable for
compilation by GHC.

For the versions parallelised by hand we use the par placements
found in the literature [Augustsson and Johnsson, 1989b; Runciman
and Wakeling, 1994].

Program 4-core
Hand Auto

SumEuler 3.32 3.31

Queens 1.76 0.97

Queens2 2.29 0.61

SodaCount 1.25 0.64

Tak 1.77 1.64

MatMul 1.75 0.80

Table 9: Speedups compared to the sequential program as compiled
by GHC for manually and automatically parallelised versions

As Table 9 makes clear, the results are not impressive. In fact, ex-
cept for SumEuler and Tak, all of the parallel benchmarks performed
worse than their sequential counterparts.

124

However, we feel that not all hope is lost. There are a few recurring
issues in the generated program. A common issue is that the gener-
ated strategies will not be what forces the evaluation of a value. Take
the following example as an illustration

foo n = let ys = gen n n

in par (tailStrict1 ys) (bar ys)

tailStrict1 xs = case xs of

y:ys -> tailStrict1 ys

[] -> ()

In the function foo we spark off a strategy that is meant to force
the spine of the list ys. The catch is that GHC’s par is fast enough
for bar ys to be what forces the evaluation of ys. So we’re paying
the overhead and reaping none of the benefits. In some programs
changing a par like the one found in foo to a seq is enough to solve
the issue and make the parallel version competitive with the manually
parallelised version. Queens, Queens2, and SodaCount all benefit from
this adaptation. The issues with MatMul are more subtle and will be
discussed in the next section.

8.5 limitations

Our approach falls short on many programs that should be easily par-
allelisable. In this section we will explore the main limits of our tech-
nique by examining what causes the MatMul benchmark to perform
so poorly. MatMul was expected to be a success story of this approach
and understanding why the technique does not properly parallelise
the program is important in improving this work in the future. The
exercise of hand parallelising the programs in Section 8.4 illuminated
two main issues: the transfer of parallelism from the callee to the
caller and lack of speculation. These two issues are interrelated but
we will present them separately for clarity.

8.5.1 Caller and Callee Parallelism

Strategies offer an elegant method of separating the logic of an algo-
rithm from how it should be parallelised. The way it accomplishes
this is by removing the burden of the callee to parallelise the structure

125

and instead ensures that the caller parallelises its result. This distinc-
tion is easy to see with the classic parMap function (remember that in
our work we must defunctionalise):

parMapf :: [α] → [β]

parMapf [] = []

parMapf (x : xs) = fx ‘par‘ (fx : parMap f xs)
where

fx = f x

The above version of parMap is callee parallel, and the function itself
is responsible for the parallelisation of the structure. Compare the
above to the version using the parallelisation technique using basic
strategies:

parList :: [α] → ()

parList [] = ()

parList (x : xs) = x ‘par‘ (parList f xs)

mapf xs ‘using‘ parList

Now our parallel mapf is caller parallel, the responsibility to paral-
lelise lies with the function that uses the result of mapf .

Why is this an Issue?

As detailed in Chapter 5, the decision about whether to parallelise an
expression is made based on the strictness properties of a function;
additionally all parallelisation must be known to be safe. Using caller
parallelism forces us to be too safe. For example, imagine that we
are parallelising the function f which takes two list arguments and
returns a list; importantly f only uses its first argument when the
second argument is a cons:

f xs [] = []

f xs ys = 〈some expression using xs〉

Using callee parallelism we could spark the evaluation of xs within
f ’s body. But with caller parallelism we are stuck even if the demand on
the result of f requires the full list! This is because the second argument
to f could be the empty list, making it unsafe for the caller to spark
the evaluation of the first argument. This is quite a loss! And it is
exactly what is happening in MatMul. To be more concrete, in MatMul

we have two functions of the following form.4

4 The functions are both defunctionalised maps: mapmulRow and mapdotProduct.

126

mapf xs ys -- xs is only used if ys is a cons

In both cases we are not able to spark a strategy to evaluate xs
because doing so would be unsafe if ys is nil.

As an aside, converting the calls to these maps to callee parallelism
(manually) is only useful for one of the functions (mapdotProduct). How-
ever, we would expect our iterative step to manage that aspect for us
by turning off the parallelism that is not useful. The result of convert-
ing mapdotProduct to callee parallelism was the only change needed in
achieving the better speedup in Table 9 for MatMul.

8.5.2 Lack of Speculation

The other limitation in our technique is the lack of speculation. For ex-
ample, take the following common idiom (present in our Taut bench-
mark):

case forall longlist of
True → e1

False→ e2

where
longlist = map f xs

Because we are in a non-strict language it is not safe to evaluate the
longlist eagerly. This is because the very first element may be False,
allowing us to ignore the rest of the list. However, when f is very ex-
pensive, it can be useful to ‘look ahead’ in the list and compute some
elements of longlist speculatively. This is because if f x is expensive
enough we would likely save time when elements of the list are True,
necessitating us to continue evaluating the list.

Unlike the caller/callee distinction above, there is no way of making
this idiom safe. Instead the compiler must annotate certain expres-
sions as speculative, and allow the runtime system to ensure that the
evaluation of these expressions does not introduce non-termination
[Checkland, 1994; Mattson Jr, 1993]. One possible hint to the com-
piler is when an expression is not strictly needed, but if it is needed,
it is needed to its full degree (such as in the longlist example above).

8.6 summary of profile-directed search

This chapter has provided a method to utilise runtime profile data in
order to better search for an optimal par setting of a given program.

127

The use of profile information gives the hill-climbing algorithm an
oracle that predicts which neighbour will be the most performant.
The oracle is based on the concept of par site health, the mean of the
work undertaken by all threads sparked by a par. This proves to be
a good metric for our runtime system but does not translate naively
to GHC.

The naive transfer to GHC is a disappointing result. That being
said, iterative compilation techniques are usually performed on the
same substrate as the final program. Using one runtime system (a
simulator) and then transferring the results to another, completely
different, runtime system proves to be too optimistic and does not
correspond to the performance increases we would like.

We feel that performing the iterative step on GHC itself would
likely provide better results, but testing this hypothesis requires adapt-
ing the compiler, static analysis, and runtime system of GHC in non-
trivial ways.

In addition to performing the iteration on GHC itself it may be
beneficial to abandon the bitstring representation of a program’s par

settings. In Section 8.4 we note that many of the performance issues
when transferring to GHC can be fixed by switching certain pars to
seqs. We may be able to adapt the search to begin by turning off the
obviously bad pars and then perform the remaining search with each
par site having three modes: on, off, and seq.

8.6.1 Comparison to Heuristic Search

In this chapter we explored using two heuristic search algorithms to
accomplish our iterative step. While the results were promising, the
ability to examine profile data should not be underestimated. The
first benefit is that our search is guaranteed to be linear in the worst
case and usually sub-linear, whereas even the greedy algorithm re-
quired exactly linear time.

As the programs grow larger the combinatorial explosion for the
hill-climbing will become more and more detrimental. For the hill-
climbing algorithm to terminate all neighbours of the current best
candidate must be explored. This means that when a program has
twenty par sites, the last iteration of the hill-climbing algorithm will
require twenty evaluations of the program! The profile-based tech-
nique’s ability to guarantee that this program will require at most

128

twenty iterations is a huge advantage. This drastically reduces the
cost of finding the worthwhile parallelism.

129

Part IV

Conclusions and Future

Directions

130

9
C O N C L U S I O N S

In short, I think things are changing [for implicit parallelism].
– Peyton Jones [2005]

This chapter provides a summary and review of our contributions,
allowing us to determine what was accomplished and what still re-
quires work.

Because of the nature of our work, and of compilers in general,
decisions about earlier phases of the compiler have consequences for
the later stages, often forcing the hand of the latter phases of the com-
piler. For this reason we will review our work backwards, discussing
the choices and trade-offs made in the reverse order of the compiler
pipeline. This will allow us to consider alternative design choices and
then consider what requirements are placed on the earlier stages of
the compiler.

In Chapter 8 we showed that it is possible to use profiling data from
the execution of functional programs to refine the parallelism that is
introduced by a static analysis. Importantly, despite being a bitstring
search, we were able to ensure that on average the search time is sub-
linear to the amount of parallelism (in the form of par annotations)
that is introduced.

However, not all programs perform well and for this technique to
work more generally it is clear that some form of speculative paral-
lelism is needed. This is made clear by the disappointing perfor-
mance of the MatMul program.

Additionally, when all things are considered, our method restricts
the use of the profiling information passed back to the compiler after
an iteration. The compiler can use profiling data to make decisions
about already existing par sites, but can not decide to create new par

sites or transform the program further. There is no fundamental rea-
son this can not be done, but it would require a re-working of the
static analysis and transformation phases of the compiler (Chapter

131

4 and 5) to somehow incorporate that information. Doing so, while
maintaining flexibility, is more complex than our approach of simply
modifying the bytecode produced by the compiler.

Chapter 7 searched over bitstrings using only the total running time
of the program’s execution. We experimented with two heuristic
search algorithms: a greedy search that only considered each bit in
the bitstring once and a traditional hill-climbing algorithm. This tech-
nique showed that even without the ability to measure detailed pro-
filing information, iterative compilation can be beneficial. The down-
side of this simplicity is the additional number of iterations that must
be performed. Using the simpler greedy algorithm allows us to cap
the number of iterations to the number of par sites introduced, but as
we saw with the SodaCount program, this can result in finding non-
optimal (but pretty good) solutions.

Our experimental platform, as described in Chapter 6, is a fairly stan-
dard implementation of a lazy functional language. The limiting as-
pect of this implementation seems to be our need to defunctionalise.
Our higher-order specialisation is suitable for exploratory purposes
but is not appropriate for wider use. The Ur/Web compiler also re-
quires a similar form of defunctionalisation (i.e. not Reynold’s style
defunctionalisation) 1 and has found success in using a modified ver-
sion of a call-pattern specialisation [Peyton Jones, 2007] to produce
first-order programs from higher-order programs. While admittedly
not total, the author of Ur/Web has stated that they are not aware of
a single ‘real’ program that this technique is unable to accommodate
[Chlipala, 2015].

Chapter 5 introduces a method of automatically deriving parallel
strategies from arbitrary demands. It would be desirable to have
a proof that our technique is total and sound (all valid projections
result in valid strategies). Before our work on automatically deriv-
ing strategies, parallelising programs automatically was limited by
the evaluation methods that were hard-coded into the compiler, of-
ten based on Wadler’s four-point domain [Hogen et al., 1992; Burn,
1987]. This limited the applicability of these techniques to list-based
programs; an unnecessary limitation given the additional information
that demand contexts provide.

1 This was discussed during at hallway conversation at ICFP 2015.

132

Despite the lack of a formal proof, we feel that this is a useful
contribution even outside the scope of implicit parallelism, we will
discuss other applications in Chapter 10.

If we desire the ability to introduce new pars (or other similar ex-
tensions) during the iterative step (as mentioned above), the static-
analysis phase of the compiler would need to be adapted. One idea
would be to change the order of the pars in a strategy to reduce
thread collisions, possibly using a path analysis [Bloss and Hudak,
1987]. Mostly, however, the principal of translating a projection into
a strategy would remain the same.

Implicit parallelism is often cited as a pipe-dream that is unlikely to
provide any real benefit to programmers [Peyton Jones, 1999; Mar-
low, 2013; Lippmeier, 2005; Hammond and Michelson, 2000]. We
feel that we have demonstrated that the topic is worth pursuing with
fresh eyes, and that in some cases a combination of static analysis
and feedback-directed compilation can achieve speedups ‘for free’.
Processor utilisation2 is much less important than it was when multi-
processor hardware was niche and expensive, pragmatic approaches
that provide useful speedups, even if not for all programs, are worth-
while in the multicore era.

2 Full utilisation of each processor in a multi-core system.

133

10
F U T U R E D I R E C T I O N S

Parallelism is initiated by the par combinator in the source pro-
gram. (At present these combinators are added by the programmer,
though we would of course like this task to be automated.)

– Trinder et al. [1996]

One of the main motivators of this work was the lack of attention
that implicit parallelism has been receiving in the functional pro-
gramming community. Early on, functional programmers were opti-
mistic about the feasibility and benefits of systems designed to exploit
the inherent parallelism in our programs. The software and hard-
ware ecosystem has changed beneath our feet since the 1980s and
1990s. Increasingly, software companies and developers prioritise de-
veloper productivity over software performance [Atwood, 2008]. The
exploitation of implicit parallelism will allow developers to regain
some of the performance without the cost of developer time.

One of our aims with this work was to show that despite setbacks
in the past, there are still techniques and analyses worth exploring in
this research area. We therefore turn our attention to the future and
discuss some of the possible avenues of exploration.

Plan of the Chapter

There are many possible extensions and improvements that can be
made to our general technique. The most direct would be to use the
runtime information for function specialisation, similar to what we
already do for the different demands on a function in Section 5.2.1.
We discuss this idea in Section 10.1.

This thesis is predicated on the idea that implicit parallelism is our
goal, and we still believe that this is a worthy pursuit. But it does
not have to be limited to implicit parallelism. There may be situations
where the programmer would like to specify that certain expressions

134

d

Figure 37: A tree representation of a recursive computation

are evaluated in parallel. We explore what such hybrid systems might
look like in Section 10.2.

It is also possible that the demand properties of a program would
be useful in identifying pipeline-parallelism automatically. Section
10.3 explores how one might design such a system.

10.1 specialising on depth

In our implementation we specialised functions in two ways: higher-
order to first-order and par placement based on varied demands.
There are, of course, many forms of specialisation that could be added:
monomorphisation, call-pattern specialisation, and even specialisa-
tion to some depth of a recursive function.

When writing parallel programs we often write recursive functions,
particularly divide-and-conquer algorithms, to take into account how
deep into a computation a call is. This allows the program to avoid
the creation of parallel threads when the computation is obviously
(to the programmer) not worthwhile. An example of this was shown
in Section 2.5.2 with our definition of quicksort. This pattern is not
only limited to parallelising the more ‘shallow’ levels of the computa-
tion and then switching to a sequential version. It is possible that the
leaves of a computation are the expensive part, and to limit the num-
ber of generated threads, one should begin with a sequential version
and switch to a parallelised version below some depth. The general
shape of the technique is drawn in Figure 37.

135

Given some depth d of the computation (usually measured in the
number of recursive calls) for the function f , the shaded nodes repre-
sent calls to one specialised form of f and the unshaded nodes rep-
resent another specialisation of f . We can attain these two versions
simply with the following transformation

f x = 〈e〉 =⇒ f1 d x = if d > depth then
f x

else
〈e[f 7→ f 1 (d + 1)]〉

All original calls to f in the source program become f1 0 and only
below a certain depth do we begin to call the original function. What
benefit does this give us? Now any par sites in f are duplicated in f2
and can be switched independently based on the depth. This gives
the iterative step the flexibility to switch off the pars for the levels of
the call tree that are not worthwhile to perform in parallel.

In order to choose an appropriate value for depth in f1 the runtime
system must be equipped with some proxy for call-depth. This could
take the form of something similar to what is used to get stack traces
for lazy functional languages [Allwood et al., 2009].

We hypothesise that the value of depth in f1 does not have to be
perfect on the first attempt. By ensuring that a reasonable depth is
chosen the compiler can then determine which pars, the ones in f1
or the ones lower in the call-depth in f , should remain on. Once the
on/off decisions have been made the compiler could attempt to tune
the value of depth.

10.1.1 Knowing When to Specialise on Depth

A subtle point is knowing when this form of specialisation is useful.
As with the main argument of this thesis, we would use both static
and dynamic information about the program. We believe that can-
didate functions for specialisation on depth must exhibit at least the
following properties:

1. The function must be recursive

2. The function must parallelise a recursive call to itself

3. The par site accomplishing the above has a wide distribution of
par health (as exemplified by par site #8 in 32)

136

We believe that for large scale programs, specialising on depth will
be necessary as divide-and-conquer algorithms are quite common.

10.2 hybrid approaches

We have presented our work as being fully automated and requiring
no intervention by the programmer, but if we loosen that requirement
on our technique we may be able to find a fruitful ‘middle-ground’
between fully-automated parallelism and programmer effort.

Super Strategies

One technique that we find promising is the idea of an automatic
strategy.

It is common for a programmer to know that an algorithm should
be parallelisable but does not want to invest the effort in parallelising
the code by hand. A ‘super-strategy’ would allow the programmer to
annotate the program, telling the compiler ‘this expression should be
parallelisable’, but without specifying how. This saves the compiler
from searching for parallelism throughout the whole program and
iterating over the large resulting search space and instead focus its
static analysis and iteration to the annotated expression.

This could be exposed to the programmer with an interface similar
to parallel strategies [Trinder et al., 1998].

Something along the lines of:

〈expression Alice would like to parallelise〉 ‘using‘ autoStrat

Or more conventionally:

autoPar 〈expression Alice would like to parallelise〉

The auto-strategy would still use the demand information available
at compile time, and proceed in the manner outlined in this thesis,
but the compiler would benefit from a much reduced search space.

10.3 automating pipeline parallelism

Using the projection-based strictness analysis to discover producer-
consumer pairs we may be able to automatically utilise pipeline par-
allelism. Because of lazy evaluation we already benefit from a form
of pipeline parallelism [Hughes, 1989]. However, because parallel ex-
pressions are not tied to specific execution contexts the producer and

137

consumer threads can easily interrupt each other due to the runtime
system scheduler. To prevent this we can use ideas from Hudak’s
para-functional programming that allow for expressions to be tagged
with operational information. This could take the form of where in
memory the expression should allocate data or which processors an
expression should be tied to [Hudak, 1986].1 If the functions are strict
enough we could employ the techniques introduced by Marlow et al.
in the Par Monad, which automatically schedules pipeline parallelism
for values that can be fully evaluated [Marlow et al., 2011].

1 Known as processor affinity in many modern systems.

138

A
B E N C H M A R K P R O G R A M S

a.1 sumeuler

import Prelude hiding (foldr, map, sum

, length, filter)

myGcd x y = if y == 0

then x

else if x > y

then myGcd (x - y) y

else myGcd x (y - x)

relPrime x y = myGcd x y == 1

euler n = length $ filter (relPrime n) xs

where xs = [1..n]

filter p [] = []

filter p (x:xs) = case p x of

True -> x:filter p xs

False -> filter p xs

length [] = 0

length (x:xs) = (+) 1 (length xs)

map f [] = []

map f (x:xs) = f x : map f xs

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

sum xs = foldr plus 0 xs

main = print $ sum $ map euler [1..1000]

139

a.2 matmul

import Prelude hiding (foldr, map, sum, null

, transpose, zipWith, replicate

)

null [] = True

null (x:xs) = False

matMul xss yss = map (mulRow (transpose yss)) xss

mulRow yssTrans xs = map (dotProduct xs) yssTrans

dotProduct xs ys = sum (zipWith (*) xs ys)

transpose (r:rs) = case null rs of

True -> map (:[]) r

False -> zipWith (:) r (transpose rs)

zipWith f [] [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

sum xs = foldr (+) 0 xs

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

map f [] = []

map f (x:xs) = f x : map f xs

onesMat n = replicate n (replicate n 1)

replicate n x = case ((==) n 0) of

True -> []

False -> x:(replicate ((-) n 1) x)

main = print $ matMul (onesMat 50) (onesMat 50)

140

a.3 queens

import Prelude hiding (concatMap, length, and)

and False a = False

and True a = a

append [] ys = ys

append (x:xs) ys = x : (append xs ys)

concatMap f [] = []

concatMap f (x:xs) = append (f x) (concatMap f xs)

length [] = 0

length (x:xs) = (+) 1 (length xs)

gen nq n = case (==) n 0 of

True -> []:[]

False -> concatMap (gen1 nq) (gen nq ((-) n 1))

gen1 nq b = concatMap (gen2 b) (toOne nq)

gen2 b q = case safe q 1 b of

True -> (q:b) : []

False -> []

safe x d [] = True

safe x d (q:l) =

and ((/=) x q) (

and ((/=) x ((+) q d)) (

and ((/=) x ((-) q d)) (

safe x ((+) d 1) l)))

toOne n = case (==) n 1 of

True -> 1:[]

False -> n : toOne ((-) n 1)

nsoln nq = length (gen nq nq)

main = print $ nsoln 10

141

a.4 queens2

import Prelude hiding (foldr, foldl, map, concatMap, sum, tail

, null, length, transpose, reverse, zipWith

, const, replicate, flip, and)

data Test a = A a | B a a | C

tail (x : xs) = xs

const a b = a

one p [] = []

one p (x : xs) = const (case p x of

True -> x : []

False -> one p xs) 0

map f [] = []

map f (x:xs) = f x : map f xs

append [] ys = ys

append (x:xs) ys = x : (append xs ys)

concatMap f [] = []

concatMap f (x:xs) = append (f x) (concatMap f xs)

length [] = 0

length (x:xs) = (+) 1 (length xs)

replicate n x =

case (==) n 0 of

True -> []

False -> x : replicate ((-) n 1) x

l = 0

r = 1

d = 2

eq x y = (==) x y

142

left xs = map (one (eq l)) (tail xs)

right xs = [] : map (one (eq r)) xs

down xs = map (one (eq d)) xs

merge [] ys = []

merge (x:xs) [] = x : xs

merge (x:xs) (y:ys) = append x y : merge xs ys

next mask = merge (merge (down mask) (left mask)) (right mask)

fill [] = []

fill (x:xs) = append (lrd x xs) (map (x:) (fill xs))

lrd [] ys = [[l,r,d]:ys]

lrd (x:xs) ys = []

solve n mask =

case (==) n 0 of

True -> []:[]

False -> concatMap (sol ((-) n 1)) (fill mask)

foo n =

case (<=) n 5 of

True -> B True False

False -> C

sol n row = map (row:) (solve n (next row))

nqueens n = length (solve n (replicate n []))

main = print $ nqueens 10

143

a.5 sodacount

import Prelude hiding (foldr, foldl, map, sum, tail, null

, transpose, reverse, zipWith

, flip)

tail (x:xs) = xs

null [] = True

null (x:xs) = False

single x = [x]

main = print $ map gridCount hidden

gridCount word =

let d = transpose grid

in let r = grid

in let dr = diagonals grid

in let ur = diagonals (reverse grid)

in let dirs = [r,d,dr,ur]

in let drow = reverse word

in (+) (sum (map (dirCount word) dirs))

(sum (map (dirCount drow) dirs))

sum xs = foldr plus 0 xs

plus x y = (+) x y

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

map f [] = []

map f (x:xs) = f x : map f xs

transpose (r:rs) = case null rs of

True -> map single r

False -> zipWith (:) r (transpose rs)

144

diagonals (r:rs) = case null rs of

True -> map single r

False -> zipInit r ([] : (diagonals rs))

reverse xs = foldl (flip (:)) [] xs

foldl f a [] = a

foldl f a (x:xs) = foldl f (f a x) xs

flip f x y = f y x

zipWith f [] [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipInit [] ys = ys

zipInit (x:xs) (y:ys) = (x:y) : zipInit xs ys

dirCount xs yss = sum (map (rowCount xs) yss)

rowCount xs ys = count (prefix xs) (suffixes ys)

count p [] = 0

count p (x:xs) =

let c = count p xs in

case p x of

True -> (+) 1 c

False -> c

suffixes xs = case null xs of

True -> []

False -> xs : suffixes (tail xs)

prefix [] ys = True

prefix (x:xs) [] = False

prefix (x:xs) (y:ys) = case ((==) x y) of

True -> prefix xs ys

False -> False

145

grid =

["YIOMRESKST"

, "AEHYGEHEDW"

, "ZFIACNITIA"

, "NTOCOMVOOR"

, "ERDLOCENSM"

, "ZOURPSRNDA"

, "OYASMOYEDL"

, "RNDENLOAIT"

, "FIWINTERRC"

, "FEZEERFTFI"

, "IIDTPHUBRL"

, "CNOHSGEION"

, "EGMOPSTASO"

, "TGFFCISHTH"

, "OTBCSSNOWI"

]

hidden =

["COSY"

, "SOFT"

, "WINTER"

, "SHIVER"

, "FROZEN"

, "SNOW"

, "WARM"

, "HEAT"

, "COLD"

, "FREEZE"

, "FROST"

, "ICE"

]

146

a.6 tak

tak x y z = case (<=) x y of

True -> z

False -> tak (tak ((-) x 1) y z)

(tak ((-) y 1) z x)

(tak ((-) z 1) x y)

main = print $ tak 24 16 8

147

a.7 taut

import Prelude hiding (foldr1, map, length

, zip, filter, flip, and

)

data Pair a b = P a b

data Prop = And Prop Prop

| Const Bool

| Implies Prop Prop

| Not Prop

| Var Char

find key ((P k v):t) = case (==) key k of

True -> v

False -> find key t

eval s (Const b) = b

eval s (Var x) = find x s

eval s (Not p) = case eval s p of

True -> False

False -> True

eval s (And p q) = case eval s p of

True -> eval s q

False -> False

eval s (Implies p q) = case eval s p of

True -> eval s q

False -> True

vars (Const b) = []

vars (Var x) = [x]

vars (Not p) = vars p

vars (And p q) = append (vars p) (vars q)

vars (Implies p q) = append (vars p) (vars q)

bools n = case (==) n 0 of

True -> []:[]

False -> let bss = bools ((-) n 1) in

append (map (False:) bss)

(map (True:) bss)

148

neq x y = (/=) x y

rmdups [] = []

rmdups (x:xs) = x:rmdups (filter (neq x) xs)

substs p = let vs = rmdups (vars p) in

map (zip vs) (bools (length vs))

isTaut p = and (map (flip eval p) (substs p))

flip f y x = f x y

length [] = 0

length (x:xs) = (+) 1 (length xs)

append [] ys = ys

append (x:xs) ys = x:append xs ys

map f [] = []

map f (x:xs) = f x : map f xs

and [] = True

and (b:bs) = case b of

True -> and bs

False -> False

filter p [] = []

filter p (x:xs) = case p x of

True -> x:filter p xs

False -> filter p xs

null [] = True

null (x:xs) = False

zip [] ys = []

zip (x:xs) [] = []

zip (x:xs) (y:ys) = (P x y) : (zip xs ys)

149

foldr1 f (x:xs) = case null xs of

True -> x

False -> f x (foldr1 f xs)

imp v = Implies (Var ’p’) (Var v)

names = "abcdefghijklmn"

testProp = Implies

(foldr1 And (map imp names))

(Implies (Var ’p’) (foldr1 And (map Var names)))

main = print $ case isTaut testProp of

True -> 1

False -> 0

150

B
L A Z I F Y E X P R E S S I O N S

Because our projection-based strictness analysis requires that our pro-
grams have the suspension and forcing of thunks explicitly annotated
in the AST we require a method to convert the standard F-lite AST
from Section 3.1 into an intermediate language with explicit thunks
(via Freeze and Unfreeze. The functions in Figure 38 accomplish this
task. The rules are adapted from a function performing the same task
in Hinze [1995, Section 2.3].

L :: Exp → Exp
L [[Var v]] = Unfreeze (Var v)
L [[Int i]] = Int i
L [[Con c]] = Con c
L [[App (Fun f) args]] = App f $ map (Freeze . L) args
L [[Let bs in e]] = Let (L ′ [[bs]]) (L [[e]])

L [[Case e alts]] = Case (A [[e]]) (L ′ [[alts]])

L ′ :: [(α, Exp)]→ [(α, Exp)]
L ′ [[ts]] = [(x,L [[e]]) | (x, e)← ts]

Figure 38: Convert an expression to one with explicit suspension and
forcing of thunks

Sometimes performing this AST pass results in redundant sequences
of Freeze(Unfreeze e). These can be safely converted to e [Hinze, 1995,
pg. 36].

151

B I B L I O G R A P H Y

Samson Abramsky. The Lazy Lambda Calculus. Research Topics in
Functional Programming, 65, 1990.

Tristan O.R. Allwood, Simon Peyton Jones, and Susan Eisenbach.
Finding the Needle: Stack Traces for GHC. In Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell, Haskell ’09, pages 129–140,
New York, NY, USA, 2009. ACM.

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-Structures: Data
Structures for Parallel Computing. ACM Transactions on Program-
ming Languages and Systems, 11(4):598–632, October 1989.

Jeff Atwood. Coding Horror: Hardware is Cheap, Program-
mers are Expensive. http://blog.codinghorror.com/

hardware-is-cheap-programmers-are-expensive/, Dec 2008.
[Online; accessed 25-September-2015].

Lennart Augustsson and Thomas Johnsson. The Chalmers Lazy ML-
compiler. Computer Journal, 32(2):127–141, April 1989a.

Lennart Augustsson and Thomas Johnsson. Parallel Graph Reduc-
tion with the 〈v,G〉-Machine. In Proceedings of the Fourth Interna-
tional Conference on Functional Programming Languages and Computer
Architecture, FPCA ’89, pages 202–213, New York, NY, USA, 1989b.
ACM.

Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri,
and Hans-Wolfgang Loidl. A Survey of High-Level Parallel Pro-
gramming Models. Technical Report HW-MACS-TR-0103, 2013.

Richard Bird. Thinking functionally with Haskell. Cambridge University
Press, 2014.

A. Bloss and Paul Hudak. Path Semantics. In Proceedings of Third
Workshop on the Mathematical Foundations of Programming Language
Semantics, pages 476–489. Tulane University, Springer-Verlag LNCS
Volume 298, 1987.

Geoffrey L. Burn. Evaluation Transformers–A Model for the Paral-
lel Evaluation of Functional Languages. In Functional Programming
Languages and Computer Architecture, pages 446–470. Springer, 1987.

152

http://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/
http://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/

Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness
Analysis for Higher-order Functions. Science of Computer Program-
ming, 7:249–278, 1986.

Geoffrey L. Burn, Simon Peyton Jones, and J.D. Robson. The Spineless
G-Machine. In Proceedings of the 1988 ACM Conference on LISP and
Functional Programming, pages 244–258. ACM, 1988.

Iain Gavin Checkland. Speculative Concurrent Evaluation in a Lazy Func-
tional Language. PhD thesis, University of York, 1994.

Adam Chlipala. An Optimizing Compiler for a Purely Functional
Web-application Language. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2015,
pages 10–21, New York, NY, USA, 2015. ACM.

Alonzo Church and J Barkley Rosser. Some Properties of Conversion.
Transactions of the American Mathematical Society, 39(3):472–482, 1936.

Chris Clack. Realisations for Non-Strict Languages. In Kevin Ham-
mond and Greg Michaelson, editors, Research Directions in Parallel
Functional Programming, chapter 6. Springer, 1999.

Chris Clack and Simon Peyton Jones. Strictness Analysis-A Practi-
cal Approach. In Functional Programming Languages and Computer
Architecture, pages 35–49. Springer, 1985.

Chris Clack and Simon Peyton Jones. The Four-Stroke Reduction
Engine. In Proceedings of the 1986 ACM Conference on LISP and Func-
tional Programming, pages 220–232. ACM, 1986.

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The Architec-
ture of the Utrecht Haskell Compiler. In Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell, Haskell ’09, pages 93–104, New
York, NY, USA, 2009. ACM.

Benjamin Goldberg. Buckwheat: Graph Reduction on a Shared-
Memory Multiprocessor. In Proceedings of the 1988 ACM Conference
on LISP and Functional Programming, LFP ’88, pages 40–51, New
York, NY, USA, 1988. ACM.

Kevin Hammond. Parallel Functional Programming: An Introduc-
tion. www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.

html, 1994.

153

www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html
www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html

Kevin Hammond and Greg Michelson. Research Directions in Parallel
Functional Programming. Springer-Verlag, 2000.

Kevin Hammond and Álvaro J. Rebón Portillo. Haskskel: Algorith-
mic skeletons in haskell. In Pieter Koopman and Chris Clack, edi-
tors, Implementation of Functional Languages, volume 1868 of Lecture
Notes in Computer Science, pages 181–198. Springer Berlin Heidel-
berg, 2000.

Tim Harris and Satnam Singh. Feedback Directed Implicit Parallelism.
42(9):251–264, October 2007. ISSN 0362-1340.

Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a
Shared-memory Multiprocessor. In Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, Haskell ’05, pages 49–61, New York,
NY, USA, 2005. ACM.

P. Harrison and M. Reeve. The Parallel Graph Reduction Machine,
ALICE. In Joseph Fasel and Robert Keller, editors, Graph Reduc-
tion, volume 279 of Lecture Notes in Computer Science, pages 181–202.
Springer Berlin / Heidelberg, 1987.

Ralf Hinze. Projection-based Strictness Analysis: Theoretical and
Practical Aspects, 1995. Inaugural Dissertation, University of Bonn.

Guido Hogen, Andrea Kindler, and Rita Loogen. Automatic Paral-
lelization of Lazy Functional Programs. In ESOP’92, pages 254–268.
Springer, 1992.

Paul Hudak. Para-functional Programming. Computer Journal, 19(8),
1986.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A History of Haskell: Being Lazy with Class. In Proceedings of
the Third ACM SIGPLAN Conference on History of Programming Lan-
guages, HOPL III, pages 12–1–12–55, New York, NY, USA, 2007.
ACM.

John Hughes. The Design and Implementation of Programming Languages.
PhD thesis, Programming Research Group, Oxford University, July
1983.

John Hughes. Strictness detection in non-flat domains. In Programs
as Data Objects, pages 112–135. Springer, 1985.

154

John Hughes. Analysing Strictness by Abstract Interpretation of Con-
tinuations. In Abstract Interpretation of Declarative Languages, pages
63–102. Ellis Horwood Chichester, 1987.

John Hughes. Why Functional Programming Matters. The Computer
Journal, 32(2):98–107, 1989.

Clèment Hurlin. Automatic Parallelization and Optimization of Pro-
grams by Proof Rewriting. Technical Report RR-6806, 2009.

Don Jones, Jr., Simon Marlow, and Satnam Singh. Parallel Perfor-
mance Tuning for Haskell. In Proceedings of the 2Nd ACM SIG-
PLAN Symposium on Haskell, Haskell ’09, pages 81–92, New York,
NY, USA, 2009. ACM.

Mark Jones and Paul Hudak. Implicit and Explicit Parallel Program-
ming in Haskell. Research Report YALEU/DCS/RR-982, 1993.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The
Revised Report. Cambridge University Press, Cambridge, England,
2003.

Gabriele Keller, Manuel MT Chakravarty, Roman Leshchinskiy,
Simon Peyton Jones, and Ben Lippmeier. Regular, Shape-
Polymorphic, Parallel Arrays in Haskell. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Programming,
volume 45 of ICFP 2010, pages 261–272. ACM, 2010.

Donald E. Knuth. Textbook Examples of Recursion. In In Artificial In-
telligence and Theory of Computation, pages 207–229. Academic Press,
1991.

Ryszard Kubiak, John Hughes, and John Launchbury. Implement-
ing Projection-Based Strictness Analysis. In Functional Programming,
Glasgow 1991, pages 207–224. Springer, 1992.

Ben Lippmeier. [Haskell] Implicit parallel functional pro-
gramming. https://mail.haskell.org/pipermail/haskell/

2005-January/015213.html, Jan 2005. [Online; accessed 21-
September-2015].

Hans Wolfgang Loidl. Granularity in Large-Scale Parallel Functional
Programming. PhD thesis, Citeseer, 1998.

155

https://mail.haskell.org/pipermail/haskell/2005-January/015213.html
https://mail.haskell.org/pipermail/haskell/2005-January/015213.html

Rita Loogen. Programming Language Constructs. In Kevin Ham-
mond and Greg Michaelson, editors, Research Directions in Parallel
Functional Programming, chapter 3. Springer, 1999.

Simon Marlow. Parallel and Concurrent Programming in Haskell.
O’Reilly, 2013.

Simon Marlow and Simon Peyton Jones. Making a Fast Curry:
Push/Enter vs. Eval/Apply for Higher-order Languages. Journal
of Functional Programming, 16(4-5):415–449, 2006.

Simon Marlow, A.R. Yakushev, and Simon Peyton Jones. Faster Lazi-
ness Using Dynamic Pointer Tagging. pages 277–288, 2007.

Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime
Support for Multicore Haskell. In Proceedings of the 14th ACM SIG-
PLAN International Conference on Functional Programming, volume 44

of ICFP 2009, pages 65–78. ACM, 2009.

Simon Marlow, P. Maier, Hans Wolfgang Loidl, M.K. Aswad, and
Philip W. Trinder. Seq No More: Better Strategies for Parallel
Haskell. In Proceedings of the 3rd ACM Symposium on Haskell, pages
91–102. ACM, 2010.

Simon Marlow, Ryan Newton, and Simon Peyton Jones. A Monad for
Deterministic Parallelism. In ACM SIGPLAN Notices, volume 46,
pages 71–82. ACM, 2011.

James S Mattson Jr. An Effective Speculative Evaluation Technique for
Parallel Supercombinator Graph Reduction. PhD thesis, University of
California at San Diego, 1993.

Matthew Might and Tarun Prabhu. Interprocedural Dependence
Analysis of Higher-Order Programs via Stack Reachability. In Pro-
ceedings of the 2009 Workshop on Scheme and Functional Programming,
pages 10–22, 2009.

Alan Mycroft. The Theory and Practice of Transforming Call-by-
Need Into Call-by-Value. In International Symposium on Program-
ming, pages 269–281. Springer, 1980.

Matthew Naylor and Colin Runciman. The reduceron reconfigured.
pages 75–86, 2010.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

156

B. O’Sullivan, D.B. Stewart, and J. Goerzen. Real World Haskell.
O’Reilly Media, 2009.

Bryan O’Sullivan. Criterion: A Haskell Microbenchmarking kibrary.
https://hackage.haskell.org/package/criterion, 2009.

Ross Paterson. Compiling Laziness Using Projections. In Radhia
Cousot and DavidA. Schmidt, editors, Static Analysis, volume 1145

of Lecture Notes in Computer Science, pages 255–269. Springer Berlin
Heidelberg, 1996.

Simon Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, Inc., 1987.

Simon Peyton Jones. Parallel Implementations of Functional Program-
ming Languages. Computer Journal, 32(2):175–186, April 1989.

Simon Peyton Jones. Implementing Lazy Functional Languages on
Stock Hardware: The Spineless Tagless G-machine. Journal of Func-
tional Programming, 2(2):127–202, 1992.

Simon Peyton Jones. Foreward. In Kevin Hammond and Greg
Michaelson, editors, Research Directions in Parallel Functional Pro-
gramming. Springer, 1999.

Simon Peyton Jones. [Haskell] Implicit parallel functional
programming. https://mail.haskell.org/pipermail/haskell/

2005-January/015218.html, Jan 2005. [Online; accessed 21-
September-2015].

Simon Peyton Jones. Call-pattern Specialisation for Haskell Programs.
In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’07, pages 327–337, New York, NY,
USA, 2007. ACM.

Simon Peyton Jones and David R. Lester. Implementing Functional
Languages. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow
Haskell Compiler Inliner. Journal of Functional Programming, 12(4-
5):393–434, 2002.

Simon Peyton Jones and André L M Santos. A transformation-based
optimiser for haskell. Science of Computer Programming, 32(1):3–47,
1998.

157

https://hackage.haskell.org/package/criterion
https://mail.haskell.org/pipermail/haskell/2005-January/015218.html
https://mail.haskell.org/pipermail/haskell/2005-January/015218.html

Simon Peyton Jones, Chris Clack, and J. Salkild. GRIP: A High Perfor-
mance Architecture for Parallel Graph Reduction. In Functional Pro-
gramming Languages and Computer Architecture: Third International
Conference (Portland, Oregon). Springer Verlag, 1987.

Rinus Plasmeijer and Marko Van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1993.

John C. Reynolds. Definitional Interpreters for Higher-order Program-
ming Languages. In Proceedings of the ACM Annual Conference - Vol-
ume 2, ACM ’72, pages 717–740, New York, NY, USA, 1972. ACM.

Colin Runciman and David Wakeling. Profiling Parallel Functional
Computations (Without Parallel Machines). In Functional Program-
ming, Glasgow 1993, pages 236–251. Springer, 1994.

Colin Runciman and David Wakeling, editors. Applications of Func-
tional Programming. UCL Press Ltd., London, UK, 1996.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, 1995.

Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. Modu-
lar, Higher-order Cardinality Analysis in Theory and Practice. In
Proceedings of the 41st ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’14, pages 335–347, New York, NY, USA,
2014. ACM.

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. Generating Performance Portable Code Using Rewrite
Rules: From High-level Functional Expressions to High-
performance OpenCL Code. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2015,
pages 205–217, New York, NY, USA, 2015. ACM.

Herb Sutter. The Free Lunch is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobbs journal, 30(3):202–210, 2005.

Guy Tremblay and Guang R Gao. The Impact of Laziness on Par-
allelism and the Limits of Strictness Analysis. In Proceedings High
Performance Functional Computing, pages 119–133, 1995.

Philip W Trinder, Kevin Hammond, James S Mattson Jr, Andrew S
Partridge, and Simon Peyton Jones. GUM: A Portable Parallel Im-

158

plementation of Haskell. In PLDI ’96: Proceedings of the 1996 Con-
ference on Programming Language Design and Implementation, pages
79–88. ACM, 1996.

Philip W. Trinder, Kevin Hammond, Hans Wolfgang Loidl, and Si-
mon Peyton Jones. Algorithm + Strategy = Parallelism. Journal of
Functional Programming, 8(1):23–60, January 1998.

David Turner. Some History of Functional Programming Languages.
In Symposium on the trends in functional programming 2012, 2012.

Philip Wadler. Strictness Analysis on Non-Flat Domains. In Ab-
stract Interpretation of Declarative Languages, pages 266–275. Ellis
Horwood, 1987.

Philip Wadler and John Hughes. Projections for Strictness Analy-
sis. In Functional Programming Languages and Computer Architecture,
pages 385–407. Springer, 1987.

C. P. Wadsworth. Semantics and Pragmatics of the λ-Calculus. PhD
thesis, Programming Research Group, Oxford University, 1971.

159

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Introduction
	Lazy Languages and Parallelism
	Goals and Contributions of this Thesis
	Thesis Roadmap

	The Idea
	Parallelism in a Functional Language
	A Short History of Graph Reduction
	Functional Programming and Parallelism
	Sequential Reduction Machines
	Parallel Reduction Machines
	Approaches to Parallelism
	Summary of the Chapter

	Bird's eye view of our Technique
	F-lite: a Lazy Purely Functional Core Language
	Overview of the Compiler
	Summary

	The Discovery and Placement of Safe Parallelism
	Finding Safe Parallelism
	Original Motivation vs. Our Motivation
	Overview
	Two-Point Forward Analysis
	Four-Point Forward Analysis
	Projection-Based Analysis
	Summary

	Derivation and Use of Parallel Strategies
	Expressing Need, Strategically
	Deriving Strategies from Projections
	Using Derived Strategies

	Experimental Platform, Benchmark Programs, and Results
	Experimental Platform
	Defunctionalisation (Higher-Order Specialisation)
	Keeping Track of all the Threads
	Trying for par: Switching off Parallelism
	Benchmark Programs

	Run-time Directed Search
	Heuristic Algorithms
	Research Questions
	Experimental Setup and Results
	Summary of Bitstring Searching

	Profile Directed Search
	par-Site Health
	Search Algorithm
	Experimental Results and Discussion
	Transfer to GHC
	Limitations
	Summary of Profile-Directed Search

	Conclusions and Future Directions
	Conclusions
	Future Directions
	Specialising on Depth
	Hybrid Approaches
	Automating Pipeline Parallelism

	Appendices
	Benchmark Programs
	SumEuler
	MatMul
	Queens
	Queens2
	SodaCount
	Tak
	Taut

	Lazify Expressions

